Koichi Takeuchi


2024

2020

As part of constructing the NINJAL Parsed Corpus of Modern Japanese (NPCMJ), a web-accessible language resource, we are adding frame information for predicates, together with two types of semantic role labels that mark the contributions of arguments. One role type consists of numbered semantic roles, like in PropBank, to capture relations between arguments in different syntactic patterns. The other role type consists of semantic roles with conventional names. Both role types are compatible with hierarchical frames that belong to related predicates. Adding semantic role and frame information to the NPCMJ will support a web environment where language learners and linguists can search examples of Japanese for syntactic and semantic features. The annotation will also provide a language resource for NLP researchers making semantic parsing models (e.g., for AMR parsing) following machine learning approaches. In this paper, we describe how the two types of semantic role labels are defined under the frame based approach, i.e., both types can be consistently applied when linked to corresponding frames. Then we show special cases of syntactic patterns and the current status of the annotation work.

2018

2016

In this paper, we propose a method of augmenting existing bilingual terminologies. Our method belongs to a “generate and validate” framework rather than extraction from corpora. Although many studies have proposed methods to find term translations or to augment terminology within a “generate and validate” framework, few has taken full advantage of the systematic nature of terminologies. A terminology of a domain represents the conceptual system of the domain fairly systematically, and we contend that making use of the systematicity fully will greatly contribute to the effective augmentation of terminologies. This paper proposes and evaluates a novel method to generate bilingual term candidates by using existing terminologies and delving into their systematicity. Experiments have shown that our method can generate much better term candidate pairs than the existing method and give improved performance for terminology augmentation.

2013

2010

2007

2004

2003

2002

1995