Kaustubh Dhole


2025

Computational argumentation, which involves generating answers or summaries for controversial topics like abortion bans and vaccination, has become increasingly important in today’s polarized environment. Sophisticated LLM capabilities offer the potential to provide nuanced, evidence-based answers to such questions through Retrieval-Augmented Argumentation (RAArg), leveraging real-world evidence for high-quality, grounded arguments. However, evaluating RAArg remains challenging, as human evaluation is costly and difficult for complex, lengthy answers on complicated topics. At the same time, re-using existing argumentation datasets is no longer sufficient, as they lack long, complex arguments and realistic evidence from potentially misleading sources, limiting holistic evaluation of retrieval effectiveness and argument quality. To address these gaps, we investigate automated evaluation methods using multiple fine-grained LLM judges, providing better and more interpretable assessments than traditional single-score metrics and even previously reported human crowdsourcing. To validate the proposed techniques, we introduce ConQRet, a new benchmark featuring long and complex human-authored arguments on debated topics, grounded in real-world websites, allowing an exhaustive evaluation across retrieval effectiveness, argument quality, and groundedness. We validate our LLM Judges on a prior dataset and the new ConQRet benchmark. Our proposed LLM Judges and the ConQRet benchmark can enable rapid progress in computational argumentation and can be naturally extended to other complex retrieval-augmented generation tasks.
Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.
In recommender systems, users often seek the best products through indirect, vague, or under-specified queries such as “best shoes for trail running.” These queries, referred to as implicit superlative queries, pose a challenge for standard retrieval and ranking systems due to their lack of explicit attribute mentions and the need for identifying and reasoning over complex attributes. We investigate how Large Language Models (LLMs) can generate implicit attributes for ranking and reason over them to improve product recommendations for such queries. As a first step, we propose a novel four-point schema, called SUPERB, for annotating the best product candidates for superlative queries, paired with LLM-based product annotations. We then empirically evaluate several existing retrieval and ranking approaches on our newly created dataset, providing insights and discussing how to integrate these findings into real-world e-commerce production systems.
Evaluating outputs from large language models (LLMs) presents significant challenges, especially as hallucinations and adversarial manipulations are often difficult to detect. Existing evaluation methods lack robustness against subtle yet intentional linguistic alterations, necessitating novel techniques for reliably assessing model-generated content. Training accurate and robust groundedness evaluators is key for mitigating hallucinations and ensuring the alignment of model or human-generated claims to real-world evidence. However, as we show, many models, while optimizing for accuracy, lack robustness to subtle variations of claims, making them unsuitable and brittle in real-world settings where adversaries employ purposeful and deceitful tactics like hedging to deceive readers, which go beyond surface-level variations. To address this problem, we propose AdvERSem, a controllable adversarial approach to manipulating LLM output via Abstract Meaning Representations (AMR) to generate attack claims of multiple fine-grained types, followed by automatic verification of the correct label. By systematically manipulating a unique linguistic facet AdvERSem provides an interpretable testbed for gauging robustness as well as useful training data. We demonstrate that utilizing these AMR manipulations during training across multiple fact verification datasets helps improve the accuracy and robustness of groundedness evaluation while also minimizing the requirement of costly annotated data. To encourage further systematic evaluation, we release AdvERSem-Test, a manually verified groundedness test-bed.

2024

State-of-the-art neural rankers pre-trained on large task-specific training data such as MS-MARCO, have been shown to exhibit strong performance on various ranking tasks without domain adaptation, also called zero-shot. However, zero-shot neural ranking may be sub-optimal, as it does not take advantage of the target domain information. Unfortunately, acquiring sufficiently large and high quality target training data to improve a modern neural ranker can be costly and time-consuming. To address this problem, we propose a new approach to unsupervised domain adaptation for ranking, DUQGen, which addresses a critical gap in prior literature, namely how to automatically generate both effective and diverse synthetic training data to fine tune a modern neural ranker for a new domain. Specifically, DUQGen produces a more effective representation of the target domain by identifying clusters of similar documents; and generates a more diverse training dataset by probabilistic sampling over the resulting document clusters. Our extensive experiments, over the standard BEIR collection, demonstrate that DUQGen consistently outperforms all zero-shot baselines and substantially outperforms the SOTA baselines on 16 out of 18 datasets, for an average of 4% relative improvement across all datasets. We complement our results with a thorough analysis for more in-depth understanding of the proposed method’s performance and to identify promising areas for further improvements.
Formulating effective search queries remains a challenging task, particularly when users lack expertise in a specific domain or are not proficient in the language of the content. Providing example documents of interest might be easier for a user. However, such query-by-example scenarios are prone to concept drift, and the retrieval effectiveness is highly sensitive to the query generation method, without a clear way to incorporate user feedback. To enable exploration and to support Human-In-The-Loop experiments we propose QueryExplorer– an interactive query generation, reformulation, and retrieval interface with support for Hug-gingFace generation models and PyTerrier’sretrieval pipelines and datasets, and extensivelogging of human feedback. To allow users to create and modify effective queries, our demo supports complementary approaches of using LLMs interactively, assisting the user with edits and feedback at multiple stages of the query formulation process. With support for recording fine-grained interactions and user annotations, QueryExplorer can serve as a valuable experimental and research platform for annotation, qualitative evaluation, and conducting Human-in-the-Loop (HITL) experiments for complex search tasks where users struggle to formulate queries.
An effective multi-turn instruction-following assistant can be developed by creating a simulator that can generate useful interaction data. Apart from relying on its intrinsic weights, an ideal user simulator should also be able to bootstrap external knowledge rapidly in its raw form to simulate the multifarious diversity of text available over the internet. Previous user simulators generally lacked diversity, were mostly closed domain, and necessitated rigid schema making them inefficient to rapidly scale to incorporate external knowledge. In this regard, we introduce Kaucus, a Knowledge-Augmented User Simulator framework, to outline a process of creating diverse user simulators, that can seamlessly exploit external knowledge as well as benefit downstream assistant model training. Through two GPT-J based simulators viz., a Retrieval Augmented Simulator and a Summary Controlled Simulator we generate diverse simulator-assistant interactions. Through reward and preference model-based evaluations, we find that these interactions serve as useful training data and create more helpful downstream assistants. We also find that incorporating knowledge through retrieval augmentation or summary control helps create better assistants.

2023

The expectation of Large Language Models (LLMs) to solve various societal problems has ignored the larger socio-technical frame of reference under which they operate. From a socio-technical perspective, LLMs are necessary to look at separately from other ML models as they have radically different implications in society never witnessed before. In this article, we ground Selbst et al.(2019)’s five abstraction traps – The Framing Trap, The Portability Trap, The Formalism Trap, The Ripple Effect Trap and the Solutionism Trap in the context of LLMs discussing the problems associated with the abstraction and fairness of LLMs. Through learnings from previous studies and examples, we discuss each trap that LLMs fall into, and propose ways to address the points of LLM failure by gauging them from a socio-technical lens. We believe the discussions would provide a broader perspective of looking at LLMs through a sociotechnical lens and our recommendations could serve as baselines to effectively demarcate responsibilities among the various technical and social stakeholders and inspire future LLM research.
We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments.NusaCrowd’s data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh Dhole | Varun Gangal | Sebastian Gehrmann | Aadesh Gupta | Zhenhao Li | Saad Mahamood | Abinaya Mahadiran | Simon Mille | Ashish Shrivastava | Samson Tan | Tongshang Wu | Jascha Sohl-Dickstein | Jinho Choi | Eduard Hovy | Ondřej Dušek | Sebastian Ruder | Sajant Anand | Nagender Aneja | Rabin Banjade | Lisa Barthe | Hanna Behnke | Ian Berlot-Attwell | Connor Boyle | Caroline Brun | Marco Antonio Sobrevilla Cabezudo | Samuel Cahyawijaya | Emile Chapuis | Wanxiang Che | Mukund Choudhary | Christian Clauss | Pierre Colombo | Filip Cornell | Gautier Dagan | Mayukh Das | Tanay Dixit | Thomas Dopierre | Paul-Alexis Dray | Suchitra Dubey | Tatiana Ekeinhor | Marco Di Giovanni | Tanya Goyal | Rishabh Gupta | Louanes Hamla | Sang Han | Fabrice Harel-Canada | Antoine Honoré | Ishan Jindal | Przemysław Joniak | Denis Kleyko | Venelin Kovatchev | Kalpesh Krishna | Ashutosh Kumar | Stefan Langer | Seungjae Ryan Lee | Corey James Levinson | Hualou Liang | Kaizhao Liang | Zhexiong Liu | Andrey Lukyanenko | Vukosi Marivate | Gerard de Melo | Simon Meoni | Maxine Meyer | Afnan Mir | Nafise Sadat Moosavi | Niklas Meunnighoff | Timothy Sum Hon Mun | Kenton Murray | Marcin Namysl | Maria Obedkova | Priti Oli | Nivranshu Pasricha | Jan Pfister | Richard Plant | Vinay Prabhu | Vasile Pais | Libo Qin | Shahab Raji | Pawan Kumar Rajpoot | Vikas Raunak | Roy Rinberg | Nicholas Roberts | Juan Diego Rodriguez | Claude Roux | Vasconcellos Samus | Ananya Sai | Robin Schmidt | Thomas Scialom | Tshephisho Sefara | Saqib Shamsi | Xudong Shen | Yiwen Shi | Haoyue Shi | Anna Shvets | Nick Siegel | Damien Sileo | Jamie Simon | Chandan Singh | Roman Sitelew | Priyank Soni | Taylor Sorensen | William Soto | Aman Srivastava | Aditya Srivatsa | Tony Sun | Mukund Varma | A Tabassum | Fiona Tan | Ryan Teehan | Mo Tiwari | Marie Tolkiehn | Athena Wang | Zijian Wang | Zijie Wang | Gloria Wang | Fuxuan Wei | Bryan Wilie | Genta Indra Winata | Xinyu Wu | Witold Wydmanski | Tianbao Xie | Usama Yaseen | Michael Yee | Jing Zhang | Yue Zhang
Northern European Journal of Language Technology, Volume 9
Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.

2022

Evaluations in machine learning rarely use the latest metrics, datasets, or human evaluation in favor of remaining compatible with prior work. The compatibility, often facilitated through leaderboards, thus leads to outdated but standardized evaluation practices. We pose that the standardization is taking place in the wrong spot. Evaluation infrastructure should enable researchers to use the latest methods and what should be standardized instead is how to incorporate these new evaluation advances. We introduce GEMv2, the new version of the Generation, Evaluation, and Metrics Benchmark which uses a modular infrastructure for dataset, model, and metric developers to benefit from each other’s work. GEMv2 supports 40 documented datasets in 51 languages, ongoing online evaluation for all datasets, and our interactive tools make it easier to add new datasets to the living benchmark.

2021

Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialogue system. While, dialogue systems today rely on static and unnatural responses like “I don’t know the answer to that question” or “I’m not sure about that”, we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.
Search
Co-authors
Fix author