Kateryna Tymoshenko


2021

2018

High-level semantics tasks, e.g., paraphrasing, textual entailment or question answering, involve modeling of text pairs. Before the emergence of neural networks, this has been mostly performed using intra-pair features, which incorporate similarity scores or rewrite rules computed between the members within the same pair. In this paper, we compute scalar products between vectors representing similarity between members of different pairs, in place of simply using a single vector for each pair. This allows us to obtain a representation specific to any pair of pairs, which delivers the state of the art in answer sentence selection. Most importantly, our approach can outperform much more complex algorithms based on neural networks.

2017

Recent work has shown that Tree Kernels (TKs) and Convolutional Neural Networks (CNNs) obtain the state of the art in answer sentence reranking. Additionally, their combination used in Support Vector Machines (SVMs) is promising as it can exploit both the syntactic patterns captured by TKs and the embeddings learned by CNNs. However, the embeddings are constructed according to a classification function, which is not directly exploitable in the preference ranking algorithm of SVMs. In this work, we propose a new hybrid approach combining preference ranking applied to TKs and pointwise ranking applied to CNNs. We show that our approach produces better results on two well-known and rather different datasets: WikiQA for answer sentence selection and SemEval cQA for comment selection in Community Question Answering.

2016

2014

2010