K. Bretonnel Cohen

Also published as: Kevin Bretonnel Cohen, Kevin Cohen, Kevin B. Cohen, Kevin Bretonnel Cohen


2025

This study explores the use of large language models (LLMs) to enhance datasets and improve irony detection in 19th-century Latin American newspapers. Two strategies were employed to evaluate the efficacy of BERT and GPT models in capturing the subtle nuances nature of irony, through both multi-class and binary classification tasks. First, we implemented dataset enhancements focused on enriching emotional and contextual cues; however, these showed limited impact on historical language analysis. The second strategy, a semi-automated annotation process, effectively addressed class imbalance and augmented the dataset with high-quality annotations. Despite the challenges posed by the complexity of irony, this work contributes to the advancement of sentiment analysis through two key contributions: introducing a new historical Spanish dataset tagged for sentiment analysis and irony detection, and proposing a semi-automated annotation methodology where human expertise is crucial for refining LLMs results, enriched by incorporating historical and cultural contexts as core features.

2023

2022

2021

The reviewing procedure has been identified as one of the major issues in the current situation of the NLP field. While it is implicitly assumed that junior researcher learn reviewing during their PhD project, this might not always be the case. Additionally, with the growing NLP community and the efforts in the context of widening the NLP community, researchers joining the field might not have the opportunity to practise reviewing. This tutorial fills in this gap by providing an opportunity to learn the basics of reviewing. Also more experienced researchers might find this tutorial interesting to revise their reviewing procedure.

2020

This tutorial will cover the theory and practice of reviewing research in natural language processing. Heavy reviewing burdens on natural language processing researchers have made it clear that our community needs to increase the size of our pool of potential reviewers. Simultaneously, notable “false negatives”—rejection by our conferences of work that was later shown to be tremendously important after acceptance by other conferences—have raised awareness of the fact that our reviewing practices leave something to be desired. We do not often talk about “false positives” with respect to conference papers, but leaders in the field have noted that we seem to have a publication bias towards papers that report high performance, with perhaps not much else of interest in them. It need not be this way. Reviewing is a learnable skill, and you will learn it here via lectures and a considerable amount of hands-on practice.

2019

With recent efforts in drawing attention to the task of replicating and/or reproducing results, for example in the context of COLING 2018 and various LREC workshops, the question arises how the NLP community views the topic of replicability in general. Using a survey, in which we involve members of the NLP community, we investigate how our community perceives this topic, its relevance and options for improvement. Based on over two hundred participants, the survey results confirm earlier observations, that successful reproducibility requires more than having access to code and data. Additionally, the results show that the topic has to be tackled from the authors’, reviewers’ and community’s side.
In the fourth edition of the WMT Biomedical Translation task, we considered a total of six languages, namely Chinese (zh), English (en), French (fr), German (de), Portuguese (pt), and Spanish (es). We performed an evaluation of automatic translations for a total of 10 language directions, namely, zh/en, en/zh, fr/en, en/fr, de/en, en/de, pt/en, en/pt, es/en, and en/es. We provided training data based on MEDLINE abstracts for eight of the 10 language pairs and test sets for all of them. In addition to that, we offered a new sub-task for the translation of terms in biomedical terminologies for the en/es language direction. Higher BLEU scores (close to 0.5) were obtained for the es/en, en/es and en/pt test sets, as well as for the terminology sub-task. After manual validation of the primary runs, some submissions were judged to be better than the reference translations, for instance, for de/en, en/es and es/en.

2018

Sequence labeling of biomedical entities, e.g., side effects or phenotypes, was a long-term task in BioNLP and MedNLP communities. Thanks to effects made among these communities, adverse reaction NER has developed dramatically in recent years. As an illuminative application, to achieve knowledge discovery via the combination of the text mining result and bioinformatics idea shed lights on the pharmacological mechanism research.

2017

2016

This paper reports SuperCAT, a corpus analysis toolkit. It is a radical extension of SubCAT, the Sublanguage Corpus Analysis Toolkit, from sublanguage analysis to corpus analysis in general. The idea behind SuperCAT is that representative corpora have no tendency towards closure―that is, they tend towards infinity. In contrast, non-representative corpora have a tendency towards closure―roughly, finiteness. SuperCAT focuses on general techniques for the quantitative description of the characteristics of any corpus (or other language sample), particularly concerning the characteristics of lexical distributions. Additionally, SuperCAT features a complete re-engineering of the previous SubCAT architecture.

2015

2014

Sublanguages are varieties of language that form “subsets” of the general language, typically exhibiting particular types of lexical, semantic, and other restrictions and deviance. SubCAT, the Sublanguage Corpus Analysis Toolkit, assesses the representativeness and closure properties of corpora to analyze the extent to which they are either sublanguages, or representative samples of the general language. The current version of SubCAT contains scripts and applications for assessing lexical closure, morphological closure, sentence type closure, over-represented words, and syntactic deviance. Its operation is illustrated with three case studies concerning scientific journal articles, patents, and clinical records. Materials from two language families are analyzed―English (Germanic), and Bulgarian (Slavic). The software is available at sublanguage.sourceforge.net under a liberal Open Source license.

2013

2012

2011

2010

Systems that locate mentions of concepts from ontologies in free text are known as ontology concept recognition systems. This paper describes an approach to the evaluation of the workings of ontology concept recognition systems through use of a structured test suite and presents a publicly available test suite for this purpose. It is built using the principles of descriptive linguistic fieldwork and of software testing. More broadly, we also seek to investigate what general principles might inform the construction of such test suites. The test suite was found to be effective in identifying performance errors in an ontology concept recognition system. The system could not recognize 2.1% of all canonical forms and no non-canonical forms at all. Regarding the question of general principles of test suite construction, we compared this test suite to a named entity recognition test suite constructor. We found that they had twenty features in total and that seven were shared between the two models, suggesting that there is a core of feature types that may be applicable to test suite construction for any similar type of application.

2009

2008

2007

2006

2005

2004

2002

Search
Co-authors
Fix author