Joss Moorkens


2025

Post-editing machine translation (MT) for creative texts, such as literature, requires balancing efficiency with the preservation of creativity and style. While neural MT systems struggle with these challenges, large language models (LLMs) offer improved capabilities for context-aware and creative translation. This study evaluates the feasibility of post-editing literary translations generated by LLMs. Using a custom research tool, we collaborated with professional literary translators to analyze editing time, quality, and creativity. Our results indicate that post-editing (PE) LLM-generated translations significantly reduce editing time compared to human translation while maintaining a similar level of creativity. The minimal difference in creativity between PE and MT, combined with substantial productivity gains, suggests that LLMs may effectively support literary translators.
UniOr PET is a browser-based platform for machine translation post-editing and a modern successor to the original PET tool. It features a user-friendly interface that records detailed editing actions, including time spent, additions, and deletions. Fully compatible with PET, UniOr PET introduces two advanced timers for more precise tracking of editing time and computes widely used metrics such as hTER, BLEU, and ChrF, providing comprehensive insights into translation quality and post-editing productivity. Designed with translators and researchers in mind, UniOr PET combines the strengths of its predecessor with enhanced functionality for efficient and user-friendly post-editing projects.

2024

This paper reports the preliminary resultsof a survey aimed at identifying and ex-ploring the attitudes and recommendationsof machine translation quality assessment(MTQA) educators. Drawing upon ele-ments from the literature on MTQA teach-ing, the survey explores themes that maypose a challenge or lead to successful im-plementation of human evaluation, as theliterature shows that there has not beenenough design and reporting. Results show educators’ awareness ofthe topic, awareness stemming from therecommendations of the literature on MTevaluation, and reports new challenges andissues.
Misinformation on social media is a concern for content creators, consumers and regulators alike. Transitude looks at misinformation generated by machine translation (MT) through distortion of the intention and sentiment of text. It is the first study of MT’s impact on the formation of users’ views of society through refugees in Ireland. It extends current MT evaluation methods with a new quality evaluation framework, producing the first dataset annotated for information distortion. It provides insights into the risks of relying on MT, with recommendations for users, developers, and policymakers.
LT-LiDER is an Erasmus+ cooperation project with two main aims. The first is to map the landscape of technological capabilities required to work as a language and/or translation expert in the digitalised and datafied language industry. The second is to generate training outputs that will help language and translation trainers improve their skills and adopt appropriate pedagogical approaches and strategies for integrating data-driven technology into their language or translation classrooms, with a focus on digital and AI literacy.

2020

With official status in both Ireland and the EU, there is a need for high-quality English-Irish (EN-GA) machine translation (MT) systems which are suitable for use in a professional translation environment. While we have seen recent research on improving both statistical MT and neural MT for the EN-GA pair, the results of such systems have always been reported using automatic evaluation metrics. This paper provides the first human evaluation study of EN-GA MT using professional translators and in-domain (public administration) data for a more accurate depiction of the translation quality available via MT.

2019

2018

This paper reports the results of two studies carried out with two different group of professional translators to find out how professionals perceive and accept SMT in comparison with TM. The first group translated and post-edited segments from English into German, and the second group from English into Spanish. Both studies had equivalent settings in order to guarantee the comparability of the results. It will also help to shed light upon the real benefit of SMT from which translators may take advantage.
Given (i) the rise of a new paradigm to machine translation based on neural networks that results in more fluent and less literal output than previous models and (ii) the maturity of machine-assisted translation via post-editing in industry, project PiPeNovel studies the feasibility of the post-editing workflow for literary text conducting experiments with professional literary translators.

2017

We examine the impact of the EU General Data Protection Regulation and the push from research funders to provide open access research data on the current practices in Language Technology Research. We analyse the challenges that arise and the opportunities to address many of them through the use of existing open data practices. We discuss the impact of this also on current practice in research ethics.
Shared tasks are increasingly common in our field, and new challenges are suggested at almost every conference and workshop. However, as this has become an established way of pushing research forward, it is important to discuss how we researchers organise and participate in shared tasks, and make that information available to the community to allow further research improvements. In this paper, we present a number of ethical issues along with other areas of concern that are related to the competitive nature of shared tasks. As such issues could potentially impact on research ethics in the Natural Language Processing community, we also propose the development of a framework for the organisation of and participation in shared tasks that can help mitigate against these issues arising.

2016

2015

2014

We present Kanjingo, a mobile app for post-editing currently running under iOS. The App was developed using an agile methodoly at CNGL, DCU. Though it could be used for numerous scenarios, our test scenario involved the post-editing of machine translated sample content for the non-profit translation organization Translators without Borders. Feedback from a first round of user testing for English-French and English-Spanish was positive, but users also identified a number of usability issues that required improvement. These issues were addressed in a second development round and a second usability evaluation was carried out in collaboration with another non-profit translation organization, The Rosetta Foundation, again with French and Spanish as target languages.

2013

2011