Josh Arnold


2021

We present LEGOEval, an open-source toolkit that enables researchers to easily evaluate dialogue systems in a few lines of code using the online crowdsource platform, Amazon Mechanical Turk. Compared to existing toolkits, LEGOEval features a flexible task design by providing a Python API that maps to commonly used React.js interface components. Researchers can personalize their evaluation procedures easily with our built-in pages as if playing with LEGO blocks. Thus, LEGOEval provides a fast, consistent method for reproducing human evaluation results. Besides the flexible task design, LEGOEval also offers an easy API to review collected data.

2019

Reinforcement learning (RL) is an effective approach to learn an optimal dialog policy for task-oriented visual dialog systems. A common practice is to apply RL on a neural sequence-to-sequence(seq2seq) framework with the action space being the output vocabulary in the decoder. However, it is difficult to design a reward function that can achieve a balance between learning an effective policy and generating a natural dialog response. This paper proposes a novel framework that alternatively trains a RL policy for image guessing and a supervised seq2seq model to improve dialog generation quality. We evaluate our framework on the GuessWhich task and the framework achieves the state-of-the-art performance in both task completion and dialog quality.