José Lopes


2020

Large corpora of task-based and open-domain conversational dialogues are hugely valuable in the field of data-driven dialogue systems. Crowdsourcing platforms, such as Amazon Mechanical Turk, have been an effective method for collecting such large amounts of data. However, difficulties arise when task-based dialogues require expert domain knowledge or rapid access to domain-relevant information, such as databases for tourism. This will become even more prevalent as dialogue systems become increasingly ambitious, expanding into tasks with high levels of complexity that require collaboration and forward planning, such as in our domain of emergency response. In this paper, we propose CRWIZ: a framework for collecting real-time Wizard of Oz dialogues through crowdsourcing for collaborative, complex tasks. This framework uses semi-guided dialogue to avoid interactions that breach procedures and processes only known to experts, while enabling the capture of a wide variety of interactions.

2018

2016

The SpeDial consortium is sharing two datasets that were used during the SpeDial project. By sharing them with the community we are providing a resource to reduce the duration of cycle of development of new Spoken Dialogue Systems (SDSs). The datasets include audios and several manual annotations, i.e., miscommunication, anger, satisfaction, repetition, gender and task success. The datasets were created with data from real users and cover two different languages: English and Greek. Detectors for miscommunication, anger and gender were trained for both systems. The detectors were particularly accurate in tasks where humans have high annotator agreement such as miscommunication and gender. As expected due to the subjectivity of the task, the anger detector had a less satisfactory performance. Nevertheless, we proved that the automatic detection of situations that can lead to problems in SDSs is possible and can be a promising direction to reduce the duration of SDS’s development cycle.

2015