Jordan Needle


2023

We investigate how well words in the polysynthetic language Inuktitut can be translated by combining dictionary definitions, without use of a neural machine translation model trained on parallel text. Such a translation system would allow natural language technology to benefit from resources designed for community use in a language revitalization or education program, rather than requiring a separate parallel corpus. We show that the text-to-text generation capabilities of GPT-3 allow it to perform this task with BLEU scores of up to 18.5. We investigate prompting GPT-3 to provide multiple translations, which can help slightly, and providing it with grammar information, which is mostly ineffective. Finally, we test GPT-3’s ability to derive morpheme definitions from whole-word translations, but find this process is prone to errors including hallucinations.

2017