Jonibek Mansurov


2025

In this paper, we show that knowledge distillation can be subverted to manipulate language model benchmark scores, revealing a critical vulnerability in current evaluation practices. We introduce “Data Laundering,” a process that enables the covert transfer of benchmark-specific knowledge through seemingly legitimate intermediate training steps. Through extensive experiments with a 2-layer BERT student model, we show how this approach can achieve substantial improvements in benchmark accuracy (up to 75% on GPQA) without developing genuine reasoning capabilities. Notably, this method can be exploited intentionally or even unintentionally, as researchers may inadvertently adopt this method and inflate scores without realising the implications. While our findings demonstrate the effectiveness of this technique, we present them as a cautionary tale highlighting the urgent need for more robust evaluation methods in AI. This work aims to contribute to the ongoing discussion about evaluation integrity in AI development and the need for benchmarks that more accurately reflect true model capabilities. The code is available at https://github.com/mbzuai-nlp/data_laundering.
Despite having a population of twenty million, Kazakhstan’s culture and language remain underrepresented in the field of natural language processing. Although large language models (LLMs) continue to advance worldwide, progress in Kazakh language has been limited, as seen in the scarcity of dedicated models and benchmark evaluations. To address this gap, we introduce KazMMLU, the first MMLU-style dataset specifically designed for Kazakh language. KazMMLU comprises 23,000 questions that cover various educational levels, including STEM, humanities, and social sciences, sourced from authentic educational materials and manually validated by native speakers and educators. The dataset includes 10,969 Kazakh questions and 12,031 Russian questions, reflecting Kazakhstan’s bilingual education system and rich local context. Our evaluation of several state-of-the-art multilingual models (Llama3.1, Qwen-2.5, GPT-4, and DeepSeek V3) demonstrates substantial room for improvement, as even the best-performing models struggle to achieve competitive performance in Kazakh and Russian. These findings highlight significant performance gaps compared to high-resource languages. We hope that our dataset will enable further research and development of Kazakh-centric LLMs.
Large language models (LLMs) are known to have the potential to generate harmful content, posing risks to users. While significant progress has been made in developing taxonomies for LLM risks and safety evaluation prompts, most studies have focused on monolingual contexts, primarily in English. However, language- and region-specific risks in bilingual contexts are often overlooked, and core findings can diverge from those in monolingual settings. In this paper, we introduce Qorǵau, a novel dataset specifically designed for safety evaluation in Kazakh and Russian, reflecting the unique bilingual context in Kazakhstan, where both Kazakh (a low-resource language) and Russian (a high-resource language) are spoken. Experiments with both multilingual and language-specific LLMs reveal notable differences in safety performance, emphasizing the need for tailored, region-specific datasets to ensure the responsible and safe deployment of LLMs in countries like Kazakhstan. Warning: this paper contains example data that may be offensive, harmful, or biased.
Large Language Models (LLMs) excel in zero-shot and few-shot tasks, but achieving similar performance with encoder-only models like BERT and RoBERTa has been challenging due to their architecture. However, encoders offer advantages such as lower computational and memory costs. Recent work adapts them for zero-shot generalization using Statement Tuning, which reformulates tasks into finite templates. We extend this approach to multilingual NLP, exploring whether encoders can achieve zero-shot cross-lingual generalization and serve as efficient alternatives to memory-intensive LLMs for low-resource languages. Our results show that state-of-the-art encoder models generalize well across languages, rivaling multilingual LLMs while being more efficient. We also analyze multilingual Statement Tuning dataset design, efficiency gains, and language-specific generalization, contributing to more inclusive and resource-efficient NLP models. We release our code and models.
We present the GenAI Content Detection Task 1 – a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 27 teams – to the Multilingual. We provide a comprehensive overview of the data, a summary of the results – including system rankings and performance scores – detailed descriptions of the participating systems, and an in-depth analysis of submissions.
Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.

2024

The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain and multi-generator corpus of MGTs — M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries. However, this has also raised concerns about the potential misuse of such texts in journalism, education, and academia. In this study, we strive to create automated systems that can detect machine-generated texts and pinpoint potential misuse. We first introduce a large-scale benchmark M4, which is a multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Through an extensive empirical study of this dataset, we show that it is challenging for detectors to generalize well on instances from unseen domains or LLMs. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and that there is a lot of room for improvement. We believe that our dataset will enable future research towards more robust approaches to this pressing societal problem. The dataset is available at https://github.com/mbzuai-nlp/M4
Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.
The ease of access to large language models (LLMs) has enabled a widespread of machine-generated texts, and now it is often hard to tell whether a piece of text was human-written or machine-generated. This raises concerns about potential misuse, particularly within educational and academic domains. Thus, it is important to develop practical systems that can automate the process. Here, we present one such system, LLM-DetectAIve, designed for fine-grained detection. Unlike most previous work on machine-generated text detection, which focused on binary classification, LLM-DetectAIve supports four categories: (i) human-written, (ii) machine-generated, (iii) machine-written, then machine-humanized, and (iv) human-written, then machine-polished. Category (iii) aims to detect attempts to obfuscate the fact that a text was machine-generated, while category (iv) looks for cases where the LLM was used to polish a human-written text, which is typically acceptable in academic writing, but not in education. Our experiments show that LLM-DetectAIve can effectively identify the above four categories, which makes it a potentially useful tool in education, academia, and other domains.LLM-DetectAIve is publicly accessible at https://github.com/mbzuai-nlp/LLM-DetectAIve. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
Search
Co-authors
Fix author