Jonathan Washington

Also published as: Jonathan N. Washington, Jonathan North Washington


2025

This paper presents work towards a morphological transducer for Hän, a Dene language spoken in Alaska and the Yukon Territory. We present the implementation of several complex morphological features of Dene languages into a morphological transducer, an evaluation of the transducer on corpus data, and a discussion of the future uses of such a transducer towards Hän revitalization efforts.
We present a Kyrgyz language seed dataset as part of our contribution to the WMT25 Open Language Data Initiative (OLDI) shared task. This paper details the process of collecting and curating English–Kyrgyz translations, highlighting the main challenges encountered in translating into a morphologically rich, low-resource language. We demonstrate the quality of the dataset through fine-tuning experiments, showing consistent improvements in machine translation performance across multiple models. Comparisons with bilingual and MNMT Kyrgyz-English baselines reveal that, for some models, our dataset enables performance surpassing pretrained baselines in both English–Kyrgyz and Kyrgyz–English translation directions. These results validate the dataset’s utility and suggest that it can serve as a valuable resource for the Kyrgyz MT community and other related low-resource languages.

2024

As part of our efforts to develop unified Universal Dependencies (UD) guidelines for Turkic languages, we evaluate multiple approaches to a difficult morphosyntactic phenomenon, pronominal locative expressions formed by a suffix -ki. These forms result in multiple syntactic words, with potentially conflicting morphological features, and participating in different dependency relations. We describe multiple approaches to the problem in current (and upcoming) Turkic UD treebanks, and show that none of them offers a solution that satisfies a number of constraints we consider (including constraints imposed by UD guidelines). This calls for a compromise with the ‘least damage’ that should be adopted by most, if not all, Turkic treebanks. Our discussion of the phenomenon and various annotation approaches may also help treebanking efforts for other languages or language families with similar constructions.

2023

2022

We present a free/open-source morphological transducer for Western Armenian, an endangered and low-resource Indo-European language. The transducer has virtually complete coverage of the language’s inflectional morphology. We built the lexicon by scraping online dictionaries. As of submission, the transducer has a lexicon of 75K words. It has over 90% naive coverage on different Western Armenian corpora, and high precision.
UniMorph 4.0: Universal Morphology
Khuyagbaatar Batsuren | Omer Goldman | Salam Khalifa | Nizar Habash | Witold Kieraś | Gábor Bella | Brian Leonard | Garrett Nicolai | Kyle Gorman | Yustinus Ghanggo Ate | Maria Ryskina | Sabrina Mielke | Elena Budianskaya | Charbel El-Khaissi | Tiago Pimentel | Michael Gasser | William Abbott Lane | Mohit Raj | Matt Coler | Jaime Rafael Montoya Samame | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Arturo Oncevay | Juan López Bautista | Gema Celeste Silva Villegas | Lucas Torroba Hennigen | Adam Ek | David Guriel | Peter Dirix | Jean-Philippe Bernardy | Andrey Scherbakov | Aziyana Bayyr-ool | Antonios Anastasopoulos | Roberto Zariquiey | Karina Sheifer | Sofya Ganieva | Hilaria Cruz | Ritván Karahóǧa | Stella Markantonatou | George Pavlidis | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Candy Angulo | Jatayu Baxi | Andrew Krizhanovsky | Natalia Krizhanovskaya | Elizabeth Salesky | Clara Vania | Sardana Ivanova | Jennifer White | Rowan Hall Maudslay | Josef Valvoda | Ran Zmigrod | Paula Czarnowska | Irene Nikkarinen | Aelita Salchak | Brijesh Bhatt | Christopher Straughn | Zoey Liu | Jonathan North Washington | Yuval Pinter | Duygu Ataman | Marcin Wolinski | Totok Suhardijanto | Anna Yablonskaya | Niklas Stoehr | Hossep Dolatian | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Aryaman Arora | Richard J. Hatcher | Ritesh Kumar | Jeremiah Young | Daria Rodionova | Anastasia Yemelina | Taras Andrushko | Igor Marchenko | Polina Mashkovtseva | Alexandra Serova | Emily Prud’hommeaux | Maria Nepomniashchaya | Fausto Giunchiglia | Eleanor Chodroff | Mans Hulden | Miikka Silfverberg | Arya D. McCarthy | David Yarowsky | Ryan Cotterell | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the Thirteenth Language Resources and Evaluation Conference
The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.
We present, to our knowledge, the first ever published morphological analyser and generator for Sakha, a marginalised language of Siberia. The transducer, developed using HFST, has coverage of solidly above 90%, and high precision. In the development of the analyser, we have expanded linguistic knowledge about Sakha, and developed strategies for complex grammatical patterns. The transducer is already being used in downstream tasks, including computer assisted language learning applications for linguistic maintenance and computational linguistic shared tasks.

2021

This paper presents work towards a morphological transducer and orthography converter for Dizhsa, or San Lucas Quiaviní Zapotec, an endangered Western Tlacolula Valley Zapotec language. The implementation of various aspects of the language’s morphology is presented, as well as the transducer’s ability to perform analysis in two orthographies and convert between them. Potential uses of the transducer for language maintenance and issues of licensing are also discussed. Evaluation of the transducer shows that it is fairly robust although incomplete, and evaluation of orthographic conversion shows that this method is strongly affected by the coverage of the transducer.
This year’s iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features. In terms of the task, we enrich UniMorph with new data for 32 languages from 13 language families, with most of them being under-resourced: Kunwinjku, Classical Syriac, Arabic (Modern Standard, Egyptian, Gulf), Hebrew, Amharic, Aymara, Magahi, Braj, Kurdish (Central, Northern, Southern), Polish, Karelian, Livvi, Ludic, Veps, Võro, Evenki, Xibe, Tuvan, Sakha, Turkish, Indonesian, Kodi, Seneca, Asháninka, Yanesha, Chukchi, Itelmen, Eibela. We evaluate six systems on the new data and conduct an extensive error analysis of the systems’ predictions. Transformer-based models generally demonstrate superior performance on the majority of languages, achieving >90% accuracy on 65% of them. The languages on which systems yielded low accuracy are mainly under-resourced, with a limited amount of data. Most errors made by the systems are due to allomorphy, honorificity, and form variation. In addition, we observe that systems especially struggle to inflect multiword lemmas. The systems also produce misspelled forms or end up in repetitive loops (e.g., RNN-based models). Finally, we report a large drop in systems’ performance on previously unseen lemmas.

2020

2019

2018

This paper presents a shallow-transfer machine translation (MT) system for translating from Kazakh to Turkish. Background on the differences between the languages is presented, followed by how the system was designed to handle some of these differences. The system is based on the Apertium free/open-source machine translation platform. The structure of the system and how it works is described, along with an evaluation against two competing systems. Linguistic components were developed, including a Kazakh-Turkish bilingual dictionary, Constraint Grammar disambiguation rules, lexical selection rules, and structural transfer rules. With many known issues yet to be addressed, our RBMT system has reached performance comparable to publicly-available corpus-based MT systems between the languages.

2017

Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18%-33% fewer parameters and is trained 1.2-2.2 times faster.

2016

~This paper describes the development of free/open-source finite-state morphological transducers for Tuvan, a Turkic language spoken in and around the Tuvan Republic in Russia. The finite-state toolkit used for the work is the Helsinki Finite-State Toolkit (HFST), we use the lexc formalism for modelling the morphotactics and twol formalism for modelling morphophonological alternations. We present a novel description of the morphological combinatorics of pseudo-derivational morphemes in Tuvan. An evaluation is presented which shows that the transducer has a reasonable coverage―around 93%―on freely-available corpora of the languages, and high precision―over 99%―on a manually verified test set.

2014

This paper describes the development of free/open-source finite-state morphological transducers for three Turkic languages―Kazakh, Tatar, and Kumyk―representing one language from each of the three sub-branches of the Kypchak branch of Turkic. The finite-state toolkit used for the work is the Helsinki Finite-State Toolkit (HFST). This paper describes how the development of a transducer for each subsequent closely-related language took less development time. An evaluation is presented which shows that the transducers all have a reasonable coverage―around 90%―on freely available corpora of the languages, and high precision over a manually verified test set.

2013

2012

This paper describes the development of a free/open-source finite-state morphological transducer for Kyrgyz. The transducer has been developed for morphological generation for use within a prototype Turkish→Kyrgyz machine translation system, but has also been extensively tested for analysis. The finite-state toolkit used for the work was the Helsinki Finite-State Toolkit (HFST). The paper describes some issues in Kyrgyz morphology, the development of the tool, some linguistic issues encountered and how they were dealt with, and which issues are left to resolve. An evaluation is presented which shows that the transducer has medium-level coverage, between 82% and 87% on two freely available corpora of Kyrgyz, and high precision and recall over a manually verified test set.
Search
Co-authors
Fix author