John Zhang


2025

We describe the methods used by our UAlberta team for the SemEval-2025 Task 2 on Entity-Aware Machine Translation (EA-MT). Our methods leverage large language models with prompt engineering strategies suited to this task, including retrieval augmented generation and in-context learning. Our best results overall are obtained with ensembles of multiple models, leveraging named entity knowledge in the dataset. Finally, we provide proof-of-concept experiments showing that lexico-semantic knowledge can be used to identify high-quality translations. We further demonstrate that our methods can function even without gold named entity translations, by using an alternative knowledge base such as BabelNet.