John Makhoul

Also published as: J. Makhoul


2020

In the IARPA MATERIAL program, information retrieval (IR) is treated as a hard detection problem; the system has to output a single global ranking over all queries, and apply a hard threshold on this global list to come up with all the hypothesized relevant documents. This means that how queries are ranked relative to each other can have a dramatic impact on performance. In this paper, we study such a performance measure, the Average Query Weighted Value (AQWV), which is a combination of miss and false alarm rates. AQWV requires that the same detection threshold is applied to all queries. Hence, detection scores of different queries should be comparable, and, to do that, a score normalization technique (commonly used in keyword spotting from speech) should be used. We describe unsupervised methods for score normalization, which are borrowed from the speech field and adapted accordingly for IR, and demonstrate that they greatly improve AQWV on the task of cross-language information retrieval (CLIR), on three low-resource languages used in MATERIAL. We also present a novel supervised score normalization approach which gives additional gains.
In this paper, we describe a cross-lingual information retrieval (CLIR) system that, given a query in English, and a set of audio and text documents in a foreign language, can return a scored list of relevant documents, and present findings in a summary form in English. Foreign audio documents are first transcribed by a state-of-the-art pretrained multilingual speech recognition model that is finetuned to the target language. For text documents, we use multiple multilingual neural machine translation (MT) models to achieve good translation results, especially for low/medium resource languages. The processed documents and queries are then scored using a probabilistic CLIR model that makes use of the probability of translation from GIZA translation tables and scores from a Neural Network Lexical Translation Model (NNLTM). Additionally, advanced score normalization, combination, and thresholding schemes are employed to maximize the Average Query Weighted Value (AQWV) scores. The CLIR output, together with multiple translation renderings, are selected and translated into English snippets via a summarization model. Our turnkey system is language agnostic and can be quickly trained for a new low-resource language in few days.
We describe the human triage scenario envisioned in the Cross-Lingual Information Retrieval (CLIR) problem of the [REDUCT] Program. The overall goal is to maximize the quality of the set of documents that is given to a bilingual analyst, as measured by the AQWV score. The initial set of source documents that are retrieved by the CLIR system is summarized in English and presented to human judges who attempt to remove the irrelevant documents (false alarms); the resulting documents are then presented to the analyst. First, we describe the AQWV performance measure and show that, in our experience, if the acceptance threshold of the CLIR component has been optimized to maximize AQWV, the loss in AQWV due to false alarms is relatively constant across many conditions, which also limits the possible gain that can be achieved by any post filter (such as human judgments) that removes false alarms. Second, we analyze the likely benefits for the triage operation as a function of the initial CLIR AQWV score and the ability of the human judges to remove false alarms without removing relevant documents. Third, we demonstrate that we can increase the benefit for human judgments by combining the human judgment scores with the original document scores returned by the automatic CLIR system.

2015

2014

Conversational spoken language translation (CSLT) systems facilitate bilingual conversations in which the two participants speak different languages. Bilingual conversations provide additional contextual information that can be used to improve the underlying machine translation system. In this paper, we describe a novel translation model adaptation method that anticipates a participant’s response in the target language, based on his counterpart’s prior turn in the source language. Our proposed strategy uses the source language utterance to perform cross-language retrieval on a large corpus of bilingual conversations in order to obtain a set of potentially relevant target responses. The responses retrieved are used to bias translation choices towards anticipated responses. On an Iraqi-to-English CSLT task, our method achieves a significant improvement over the baseline system in terms of BLEU, TER and METEOR metrics.

2013

2012

2010

2006

We examine a new, intuitive measure for evaluating machine-translation output that avoids the knowledge intensiveness of more meaning-based approaches, and the labor-intensiveness of human judgments. Translation Edit Rate (TER) measures the amount of editing that a human would have to perform to change a system output so it exactly matches a reference translation. We show that the single-reference variant of TER correlates as well with human judgments of MT quality as the four-reference variant of BLEU. We also define a human-targeted TER (or HTER) and show that it yields higher correlations with human judgments than BLEU—even when BLEU is given human-targeted references. Our results indicate that HTER correlates with human judgments better than HMETEOR and that the four-reference variants of TER and HTER correlate with human judgments as well as—or better than—a second human judgment does.

1994

1993

1992

1991

1990

1989