Jipeng Qiang

Other people with similar names: Jipeng Qiang

Unverified author pages with similar names: Jipeng Qiang


2025

Audiobook interpretations are attracting increasing attention, as they provide accessible and in-depth analyses of books that offer readers practical insights and intellectual inspiration. However, their manual creation process remains time-consuming and resource-intensive. To address this challenge, we propose AI4Reading, a multi-agent collaboration system leveraging large language models (LLMs) and speech synthesis technology to generate podcast-like audiobook interpretations. The system is designed to meet three key objectives: accurate content preservation, enhanced comprehensibility, and a logical narrative structure. To achieve these goals, We develop a framework composed of 11 specialized agents—including topic analysts, case analysts, editors, a narrator, and proofreaders—that work in concert to explore themes, extract real-world cases, refine content organization, and synthesize natural spoken language. By comparing expert interpretations with our system’s output, the results show that although AI4Reading still has a gap in speech generation quality, the generated interpretative scripts are simpler and more accurate. The code of AI4Reading is publicly accessible , with a demonstration video available .
E-commerce live streaming in China, particularly on platforms like Douyin, has become a major sales channel, but hosts often use morphs to evade scrutiny and engage in false advertising. This study introduces the Live Auditory Morph Resolution (LiveAMR) task to detect such violations. Unlike previous morph research focused on text-based evasion in social media and underground industries, LiveAMR targets pronunciation-based evasion in health and medical live streams. We constructed the first LiveAMR dataset with 86,790 samples and developed a method to transform the task into a text-to-text generation problem. By leveraging large language models (LLMs) to generate additional training data, we improved performance and demonstrated that morph resolution significantly enhances live streaming regulation.