Janice Lam


2023

Hallucinations in machine translation are translations that contain information completely unrelated to the input. Omissions are translations that do not include some of the input information. While both cases tend to be catastrophic errors undermining user trust, annotated data with these types of pathologies is extremely scarce and is limited to a few high-resource languages. In this work, we release an annotated dataset for the hallucination and omission phenomena covering 18 translation directions with varying resource levels and scripts. Our annotation covers different levels of partial and full hallucinations as well as omissions both at the sentence and at the word level. Additionally, we revisit previous methods for hallucination and omission detection, show that conclusions made based on a single language pair largely do not hold for a large-scale evaluation, and establish new solid baselines.

2022

Obtaining meaningful quality scores for machine translation systems through human evaluation remains a challenge given the high variability between human evaluators, partly due to subjective expectations for translation quality for different language pairs. We propose a new metric called XSTS that is more focused on semantic equivalence and a cross-lingual calibration method that enables more consistent assessment. We demonstrate the effectiveness of these novel contributions in large scale evaluation studies across up to 14 language pairs, with translation both into and out of English.