Ine Gevers


2025

In this study, we take a closer look at how Winograd schema challenges can be used to evaluate common sense reasoning in LLMs. Specifically, we evaluate generative models of different sizes on the popular WinoGrande benchmark. We release WinoWhat, a new corpus, in which each instance of the WinoGrande validation set is paraphrased. Additionally, we evaluate the performance on the challenge across five common sense knowledge categories, giving more fine-grained insights on what types of knowledge are more challenging for LLMs. Surprisingly, all models perform significantly worse on WinoWhat, implying that LLM reasoning capabilities are overestimated on WinoGrande. To verify whether this is an effect of benchmark memorization, we match benchmark instances to LLM trainingdata and create two test-suites. We observe that memorization has a minimal effect on model performance on WinoGrande.
Standardized benchmarks are central to evaluating and comparing model performance in Natural Language Processing (NLP). However, Large Language Models (LLMs) have exposed shortcomings in existing benchmarks, and so far there is no clear solution. In this paper, we survey a wide scope of benchmarking issues, and provide an overview of solutions as they are suggested in the literature. We observe that these solutions often tackle a limited number of issues, neglecting other facets. Therefore, we propose concrete checklists to cover all aspects of benchmarking issues, both for benchmark creation and usage. We illustrate the use of our checklists by applying them to three popular NLP benchmarks (i.e., SuperGLUE, WinoGrande, and ARC-AGI). Additionally, we discuss the potential advantages of adding minimal-sized test-suites to benchmarking, which would ensure downstream applicability on real-world use cases.