Ian Roberts


2025

Data annotation is an essential component of the machine learning pipeline; it is also a costly and time-consuming process. With the introduction of transformer-based models, annotation at the document level is increasingly popular; however, there is no standard framework for structuring such tasks. The EffiARA annotation framework is, to our knowledge, the first project to support the whole annotation pipeline, from understanding the resources required for an annotation task to compiling the annotated dataset and gaining insights into the reliability of individual annotators as well as the dataset as a whole. The framework’s efficacy is supported by two previous studies: one improving classification performance through annotator-reliability-based soft-label aggregation and sample weighting, and the other increasing the overall agreement among annotators through removing identifying and replacing an unreliable annotator. This work introduces the EffiARA Python package and its accompanying webtool, which provides an accessible graphical user interface for the system. We open-source the EffiARA Python package at https://github.com/MiniEggz/EffiARA and the webtool is publicly accessible at https://effiara.gate.ac.uk.

2023

We present GATE Teamware 2: an open-source web-based platform for managing teams of annotators working on document classification tasks. GATE Teamware 2 is an entirely re-engineered successor to GATE Teamware, using contemporary web frameworks. The software allows the management of teams of multiple annotators, project managers and administrators - including the management of annotators - across multiple projects. Projects can be configured to control and monitor the annotation statistics and have a highly flexible JSON-configurable annotation display which can include arbitrary HTML. Optionally, documents can be uploaded with pre-existing annotations and documents are served to annotators in a random order by default to reduce bias. Crucially, annotators can be trained on applying the annotation guidelines correctly and then screened for quality assurance purposes, prior to being cleared for independent annotation. GATE Teamware 2 can be self-deployed, including in container orchestration environments, or provided as private, hosted cloud instances.GATE Teamware 2 is an open-source software and can be downloaded from https://github.com/GATENLP/gate-teamware.A demonstration video of the system has also been made available at https://youtu.be/KoXkuhc4fmM.

2022

Interoperability is a necessity for the resolution of complex tasks that require the interconnection of several NLP services. This article presents the approaches that were adopted in three scenarios to address the respective interoperability issues. The first scenario describes the creation of a common REST API for a specific platform, the second scenario presents the interconnection of several platforms via mapping of different representation formats and the third scenario shows the complexities of interoperability through semantic schema mapping or automatic translation.

2021

Europe is a multilingual society, in which dozens of languages are spoken. The only option to enable and to benefit from multilingualism is through Language Technologies (LT), i.e., Natural Language Processing and Speech Technologies. We describe the European Language Grid (ELG), which is targeted to evolve into the primary platform and marketplace for LT in Europe by providing one umbrella platform for the European LT landscape, including research and industry, enabling all stakeholders to upload, share and distribute their services, products and resources. At the end of our EU project, which will establish a legal entity in 2022, the ELG will provide access to approx. 1300 services for all European languages as well as thousands of data sets.

2020

With regard to the wider area of AI/LT platform interoperability, we concentrate on two core aspects: (1) cross-platform search and discovery of resources and services; (2) composition of cross-platform service workflows. We devise five different levels (of increasing complexity) of platform interoperability that we suggest to implement in a wider federation of AI/LT platforms. We illustrate the approach using the five emerging AI/LT platforms AI4EU, ELG, Lynx, QURATOR and SPEAKER.
With 24 official EU and many additional languages, multilingualism in Europe and an inclusive Digital Single Market can only be enabled through Language Technologies (LTs). European LT business is dominated by hundreds of SMEs and a few large players. Many are world-class, with technologies that outperform the global players. However, European LT business is also fragmented – by nation states, languages, verticals and sectors, significantly holding back its impact. The European Language Grid (ELG) project addresses this fragmentation by establishing the ELG as the primary platform for LT in Europe. The ELG is a scalable cloud platform, providing, in an easy-to-integrate way, access to hundreds of commercial and non-commercial LTs for all European languages, including running tools and services as well as data sets and resources. Once fully operational, it will enable the commercial and non-commercial European LT community to deposit and upload their technologies and data sets into the ELG, to deploy them through the grid, and to connect with other resources. The ELG will boost the Multilingual Digital Single Market towards a thriving European LT community, creating new jobs and opportunities. Furthermore, the ELG project organises two open calls for up to 20 pilot projects. It also sets up 32 national competence centres and the European LT Council for outreach and coordination purposes.

2019

Reasoning over paths in large scale knowledge graphs is an important problem for many applications. In this paper we discuss a simple approach to automatically build and rank paths between a source and target entity pair with learned embeddings using a knowledge base completion model (KBC). We assembled a knowledge graph by mining the available biomedical scientific literature and extracted a set of high frequency paths to use for validation. We demonstrate that our method is able to effectively rank a list of known paths between a pair of entities and also come up with plausible paths that are not present in the knowledge graph. For a given entity pair we are able to reconstruct the highest ranking path 60% of the time within the top 10 ranked paths and achieve 49% mean average precision. Our approach is compositional since any KBC model that can produce vector representations of entities can be used.
We present a novel framework to deal with relation extraction tasks in cases where there is complete lack of supervision, either in the form of gold annotations, or relations from a knowledge base. Our approach leverages syntactic parsing and pre-trained word embeddings to extract few but precise relations, which are then used to annotate a larger corpus, in a manner identical to distant supervision. The resulting data set is employed to fine tune a pre-trained BERT model in order to perform relation extraction. Empirical evaluation on four data sets from the biomedical domain shows that our method significantly outperforms two simple baselines for unsupervised relation extraction and, even if not using any supervision at all, achieves slightly worse results than the state-of-the-art in three out of four data sets. Importantly, we show that it is possible to successfully fine tune a large pretrained language model with noisy data, as opposed to previous works that rely on gold data for fine tuning.

2016

One of the main obstacles, hampering method development and comparative evaluation of named entity recognition in social media, is the lack of a sizeable, diverse, high quality annotated corpus, analogous to the CoNLL’2003 news dataset. For instance, the biggest Ritter tweet corpus is only 45,000 tokens – a mere 15% the size of CoNLL’2003. Another major shortcoming is the lack of temporal, geographic, and author diversity. This paper introduces the Broad Twitter Corpus (BTC), which is not only significantly bigger, but sampled across different regions, temporal periods, and types of Twitter users. The gold-standard named entity annotations are made by a combination of NLP experts and crowd workers, which enables us to harness crowd recall while maintaining high quality. We also measure the entity drift observed in our dataset (i.e. how entity representation varies over time), and compare to newswire. The corpus is released openly, including source text and intermediate annotations.

2014

2013

2004