Herbert Lange


2022

The QUEST (QUality ESTablished) project aims at ensuring the reusability of audio-visual datasets (Wamprechtshammer et al., 2022) by devising quality criteria and curating processes. RefCo (Reference Corpora) is an initiative within QUEST in collaboration with DoReCo (Documentation Reference Corpus, Paschen et al. (2020)) focusing on language documentation projects. Previously, Aznar and Seifart (2020) introduced a set of quality criteria dedicated to documenting fieldwork corpora. Based on these criteria, we establish a semi-automatic review process for existing and work-in-progress corpora, in particular for language documentation. The goal is to improve the quality of a corpus by increasing its reusability. A central part of this process is a template for machine-readable corpus documentation and automatic data verification based on this documentation. In addition to the documentation and automatic verification, the process involves a human review and potentially results in a RefCo certification of the corpus. For each of these steps, we provide guidelines and manuals. We describe the evaluation process in detail, highlight the current limits for automatic evaluation and how the manual review is organized accordingly.

2020

2019

2018

MULLE is a tool for language learning that focuses on teaching Latin as a foreign language. It is aimed for easy integration into the traditional classroom setting and syllabus, which makes it distinct from other language learning tools that provide standalone learning experience. It uses grammar-based lessons and embraces methods of gamification to improve the learner motivation. The main type of exercise provided by our application is to practice translation, but it is also possible to shift the focus to vocabulary or morphology training.