Heather Simpson


2010

Previous content extraction evaluations have neglected to address problems which complicate the incorporation of extracted information into an existing knowledge base. Previous question answering evaluations have likewise avoided tasks such as explicit disambiguation of target entities and handling a fixed set of questions about entities without previous determination of possible answers. In 2009 NIST conducted a Knowledge Base Population track at its Text Analysis Conference to unite the content extraction and question answering communities and jointly explore some of these issues. This exciting new evaluation attracted 13 teams from 6 countries that submitted results in two tasks, Entity Linking and Slot Filling. This paper explains the motivation and design of the tasks, describes the language resources that were developed for this evaluation, offers comparisons to previous community evaluations, and briefly summarizes the performance obtained by systems. We also identify relevant issues pertaining to target selection, challenging queries, and performance measures.
The goal of DARPA’s Machine Reading (MR) program is nothing less than making the world’s natural language corpora available for formal processing. Most text processing research has focused on locating mission-relevant text (information retrieval) and on techniques for enriching text by transforming it to other forms of text (translation, summarization) ― always for use by humans. In contrast, MR will make knowledge contained in text available in forms that machines can use for automated processing. This will be done with little human intervention. Machines will learn to read from a few examples and they will read to learn what they need in order to answer questions or perform some reasoning task. Three independent Reading Teams are building universal text engines which will capture knowledge from naturally occurring text and transform it into the formal representations used by Artificial Intelligence. An Evaluation Team is selecting and annotating text corpora with task domain concepts, creating model reasoning systems with which the reading systems will interact, and establishing question-answer sets and evaluation protocols to measure progress toward this goal. We describe development of the MR evaluation framework, including test protocols, linguistic resources and technical infrastructure.
The Text Analysis Conference (TAC) is a series of Natural Language Processing evaluation workshops organized by the National Institute of Standards and Technology. The Knowledge Base Population (KBP) track at TAC 2009, a hybrid descendant of the TREC Question Answering track and the Automated Content Extraction (ACE) evaluation program, is designed to support development of systems that are capable of automatically populating a knowledge base with information about entities mined from unstructured text. An important component of the KBP evaluation is the Entity Linking task, where systems must accurately associate text mentions of unknown Person (PER), Organization (ORG), and Geopolitical (GPE) names to entries in a knowledge base. Linguistic Data Consortium (LDC) at the University of Pennsylvania creates and distributes linguistic resources including data, annotations, system assessment, tools and specifications for the TAC KBP evaluations. This paper describes the 2009 resource creation efforts, with particular focus on the selection and development of named entity mentions for the Entity Linking task evaluation.

2009