Gully Burns


2021

Evidence plays a crucial role in any biomedical research narrative, providing justification for some claims and refutation for others. We seek to build models of scientific argument using information extraction methods from full-text papers. We present the capability of automatically extracting text fragments from primary research papers that describe the evidence presented in that paper’s figures, which arguably provides the raw material of any scientific argument made within the paper. We apply richly contextualized deep representation learning pre-trained on biomedical domain corpus to the analysis of scientific discourse structures and the extraction of “evidence fragments” (i.e., the text in the results section describing data presented in a specified subfigure) from a set of biomedical experimental research articles. We first demonstrate our state-of-the-art scientific discourse tagger on two scientific discourse tagging datasets and its transferability to new datasets. We then show the benefit of leveraging scientific discourse tags for downstream tasks such as claim-extraction and evidence fragment detection. Our work demonstrates the potential of using evidence fragments derived from figure spans for improving the quality of scientific claims by cataloging, indexing and reusing evidence fragments as independent documents.

2017

Characterizing the content of a technical document in terms of its learning utility can be useful for applications related to education, such as generating reading lists from large collections of documents. We refer to this learning utility as the “pedagogical value” of the document to the learner. While pedagogical value is an important concept that has been studied extensively within the education domain, there has been little work exploring it from a computational, i.e., natural language processing (NLP), perspective. To allow a computational exploration of this concept, we introduce the notion of “pedagogical roles” of documents (e.g., Tutorial and Survey) as an intermediary component for the study of pedagogical value. Given the lack of available corpora for our exploration, we create the first annotated corpus of pedagogical roles and use it to test baseline techniques for automatic prediction of such roles.
Learners need to find suitable documents to read and prioritize them in an appropriate order. We present a method of automatically generating reading lists, selecting documents based on their pedagogical value to the learner and ordering them using the structure of concepts in the domain. Resulting reading lists related to computational linguistics were evaluated by advanced learners and judged to be near the quality of those generated by domain experts. We provide an open-source implementation of our method to enable future work on reading list generation.

2016

2011

2008

2007