Graham Wilcock

Also published as: G. Wilcock


2025

Existing methods for storing dialogue history and for tracking mentioned entities in spoken dialogues usually handle these tasks separately. Recent advances in knowledge graphs and generative AI make it possible to integrate them in a framework with a uniform representation for dialogue management. This may help to build more natural and grounded dialogue models that can reduce misunderstanding and lead to more reliable dialogue-based interactions with AI agents. The paper describes ongoing work on this approach.

2024

The paper describes methods for anticipating follow-up questions in exploratory information search. There are two main cases: information stored in knowledge graphs, and information in unstructured texts such as Wikipedia. In the first case, follow-up questions are anticipated by extracting subgraphs relevant to user queries, passing the subgraphs to an LLM to generate responses. In the second case, entities and their relationships are extracted from the texts and added to short-term knowledge graphs relevant to initial queries. Follow-up questions are then anticipated by extracting subgraphs relevant to subsequent queries and passing the subgraphs to the LLM, as in the first case. The short-term graphs in dialogue memory are often sufficient to answer follow-up questions. If they are not, the described steps are repeated as required.

2016

We demonstrate a bilingual robot application, WikiTalk, that can talk fluently in both English and Japanese about almost any topic using information from English and Japanese Wikipedias. The English version of the system has been demonstrated previously, but we now present a live demo with a Nao robot that speaks English and Japanese and switches language on request. The robot supports the verbal interaction with face-tracking, nodding and communicative gesturing. One of the key features of the WikiTalk system is that the robot can switch from the current topic to related topics during the interaction in order to navigate around Wikipedia following the user’s individual interests.
The paper describes topic shifting in dialogues with a robot that provides information from Wiki-pedia. The work focuses on a double topical construction of dialogue coherence which refers to discourse coherence on two levels: the evolution of dialogue topics via the interaction between the user and the robot system, and the creation of discourse topics via the content of the Wiki-pedia article itself. The user selects topics that are of interest to her, and the system builds a list of potential topics, anticipated to be the next topic, by the links in the article and by the keywords extracted from the article. The described system deals with Wikipedia articles, but could easily be adapted to other digital information providing systems.

2015

2014

2013

2012

The paper discusses mechanisms for topic management in conversations, concentrating on interactions where the interlocutors react to each other's presentation of new information and construct a shared context in which to exchange information about interesting topics. This is illustrated with a robot simulator that can talk about unrestricted (open-domain) topics that the human interlocutor shows interest in. Wikipedia is used as the source of information from which the robotic agent draws its world knowledge.

2009

2007

2005

2003

2002

2001

2000

1998

1996

1990