Frank Seide


2018

We present Marian, an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs. Marian is written entirely in C++. We describe the design of the encoder-decoder framework and demonstrate that a research-friendly toolkit can achieve high training and translation speed.

2013

This paper describes the systems used for the MSR+FBK submission for the SLT track of IWSLT 2013. Starting from a baseline system we made a series of iterative and additive improvements, including a novel method for processing bilingual data used to train MT systems for use on ASR output. Our primary submission is a system combination of five individual systems, combining the output of multiple ASR engines with multiple MT techniques. There are two contrastive submissions to help place the combined system in context. We describe the systems used and present results on the test sets.

2006

2005