Fernando Pereira

Also published as: Fernando C.N. Pereira, Fernando C. N. Pereira


2018

Spatial language understanding is important for practical applications and as a building block for better abstract language understanding. Much progress has been made through work on understanding spatial relations and values in images and texts as well as on giving and following navigation instructions in restricted domains. We argue that the next big advances in spatial language understanding can be best supported by creating large-scale datasets that focus on points and paths based in the real world, and then extending these to create online, persistent playscapes that mix human and bot players, where the bot players must learn, evolve, and survive according to their depth of understanding of scenes, navigation, and interactions.

2016

2015

We present Plato, a probabilistic model for entity resolution that includes a novel approach for handling noisy or uninformative features, and supplements labeled training data derived from Wikipedia with a very large unlabeled text corpus. Training and inference in the proposed model can easily be distributed across many servers, allowing it to scale to over 107 entities. We evaluate Plato on three standard datasets for entity resolution. Our approach achieves the best results to-date on TAC KBP 2011 and is highly competitive on both the CoNLL 2003 and TAC KBP 2012 datasets.

2012

2011

2010

2008

2007

2006

2005

2003

1999

1998

1997

1995

1994

1993

1992

1991

1990

1989

1988

1987

1985

1984

1983

1982

1981