Fergus McInnes


2014

This paper describes the University of Edinburgh (UEDIN) ASR systems for the 2014 IWSLT Evaluation. Notable features of the English system include deep neural network acoustic models in both tandem and hybrid configuration with the use of multi-level adaptive networks, LHUC adaptation and Maxout units. The German system includes lightly supervised training and a new method for dictionary generation. Our voice activity detection system now uses a semi-Markov model to incorporate a prior on utterance lengths. There are improvements of up to 30% relative WER on the tst2013 English test set.

2013

This paper describes the University of Edinburgh (UEDIN) English ASR system for the IWSLT 2013 Evaluation. Notable features of the system include deep neural network acoustic models in both tandem and hybrid configuration, cross-domain adaptation with multi-level adaptive networks, and the use of a recurrent neural network language model. Improvements to our system since the 2012 evaluation – which include the use of a significantly improved n-gram language model – result in a 19% relative WER reduction on the tst2012 set.

2012

This paper describes the University of Edinburgh (UEDIN) systems for the IWSLT 2012 Evaluation. We participated in the ASR (English), MT (English-French, German-English) and SLT (English-French) tracks.