Felix Friedrich


2025

Text-to-image (T2I) generation models have achieved great results in image quality, flexibility, and text alignment, leading to widespread use. Through improvements in multilingual abilities, a larger community can access this technology. Yet, we show that multilingual models suffer from substantial gender bias. Furthermore, the expectation that results should be similar across languages does not hold. We introduce MAGBIG, a controlled benchmark designed to study gender bias in multilingual T2I models, and use it to assess the impact of multilingualism on gender bias. To this end, we construct a set of multilingual prompts that offers a carefully controlled setting accounting for the complex grammatical differences influencing gender across languages. Our results show strong gender biases and notable language-specific differences across models. While we explore prompt engineering strategies to mitigate these biases, we find them largely ineffective and sometimes even detrimental to text-to-image alignment. Our analysis highlights the need for research on diverse language representations and greater control over bias in T2I models.
Pretrained language models are integral part of AI applications, but their high computational cost for training limits accessibility. Initiatives such as Bloom and StarCoder aim to democratize access to pretrained models for collaborative community development. Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435B additional tokens, Aurora-M surpasses 2T tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. We evaluate Aurora-M across a wide range of tasks and languages, showcasing its robustness against catastrophic forgetting and its superior performance in multilingual settings, particularly in safety evaluations. We open-source Aurora-M and its variants to encourage responsible open-source development of large language models at https://huggingface.co/aurora-m.