Fatih Uzdilli


2017

In this paper we present SB10k, a new corpus for sentiment analysis with approx. 10,000 German tweets. We use this new corpus and two existing corpora to provide state-of-the-art benchmarks for sentiment analysis in German: we implemented a CNN (based on the winning system of SemEval-2016) and a feature-based SVM and compare their performance on all three corpora. For the CNN, we also created German word embeddings trained on 300M tweets. These word embeddings were then optimized for sentiment analysis using distant-supervised learning. The new corpus, the German word embeddings (plain and optimized), and source code to re-run the benchmarks are publicly available.

2016

2015

2014

In this paper, we analyze the quality of several commercial tools for sentiment detection. All tools are tested on nearly 30,000 short texts from various sources, such as tweets, news, reviews etc. The best commercial tools have average accuracy of 60%. We then apply machine learning techniques (Random Forests) to combine all tools, and show that this results in a meta-classifier that improves the overall performance significantly.