Evgeny Chukharev


2025

This study aims to improve the reliability of a new AI collaborative scoring system used to assess the quality of students’ written arguments. The system draws on the Rational Force Model and focuses on classifying the functional relation of each proposition in terms of support, opposition, acceptability, and relevance.
Recent advances in LLMs offer new opportunities for supporting student writing, particularly through real-time, composition-level feedback. However, for such support to be effective, LLMs need to generate text completions that align with the writer’s internal representation of their developing message, a representation that is often implicit and difficult to observe. This paper investigates the use of eye-tracking data, specifically lookback fixations during pauses in text production, as a cue to this internal representation. Using eye movement data from students composing texts, we compare human-generated completions with LLM-generated completions based on prompts that either include or exclude words and sentences fixated during pauses. We find that incorporating lookback fixations enhances human-LLM alignment in generating text completions. These results provide empirical support for generating fixation-aware LLM feedback and lay the foundation for future educational tools that deliver real-time, composition-level feedback grounded in writers’ attention and cognitive processes.