Eszter Simon


2019

We present a more efficient version of the e-magyar NLP pipeline for Hungarian called emtsv. It integrates Hungarian NLP tools in a framework whose individual modules can be developed or replaced independently and allows new ones to be added. The design also allows convenient investigation and manual correction of the data flow from one module to another. The improvements we publish include effective communication between the modules and support of the use of individual modules both in the chain and standing alone. Our goals are accomplished using extended tsv (tab separated values) files, a simple, uniform, generic and self-documenting input/output format. Our vision is maintaining the system for a long time and making it easier for external developers to fit their own modules into the system, thus sharing existing competencies in the field of processing Hungarian, a mid-resourced language. The source code is available under LGPL 3.0 license at https://github.com/dlt-rilmta/emtsv .

2018

2017

2016

2014

The Europe Media Monitor (EMM) is a fully-automatic system that analyses written online news by gathering articles in over 70 languages and by applying text analysis software for currently 21 languages, without using linguistic tools such as parsers, part-of-speech taggers or morphological analysers. In this paper, we describe the effort of adding to EMM Hungarian text mining tools for news gathering; document categorisation; named entity recognition and classification for persons, organisations and locations; name lemmatisation; quotation recognition; and cross-lingual linking of related news clusters. The major challenge of dealing with the Hungarian language is its high degree of inflection and agglutination. We present several experiments where we apply linguistically light-weight methods to deal with inflection and we propose a method to overcome the challenges. We also present detailed frequency lists of Hungarian person and location name suffixes, as found in real-life news texts. This empirical data can be used to draw further conclusions and to improve existing Named Entity Recognition software. Within EMM, the solutions described here will also be applied to other morphologically complex languages such as those of the Slavic language family. The media monitoring and analysis system EMM is freely accessible online via the web page http://emm.newsbrief.eu/overview.html.

2012

2007

2006

This paper describes morphdb.hu, a Hungarian lexical database and morphological grammar. Morphdb.hu is the outcome of a several-year collaborative effort and represents the resource with the widest coverage and broadest range of applicability presently available for Hungarian. The grammar resource is the formalization of well-founded theoretical decisions handling inflection and productive derivation. The lexical database was created by merging three independent lexical databases, and the resulting resource was further extended.