Ester Boldrini


2017

Emotion detection has a high potential positive impact on the benefit of business, society, politics or education. Given this, the main objective of our research is to contribute to the resolution of one of the most important challenges in textual emotion detection: emotional corpora annotation. This will be tackled by proposing a semi-automatic methodology. It consists in two main phases: (1) an automatic process to pre-annotate the unlabelled sentences with a reduced number of emotional categories; and (2) a manual process of refinement where human annotators will determine which is the dominant emotion between the pre-defined set. Our objective in this paper is to show the pre-annotation process, as well as to evaluate the usability of subjective and polarity information in this process. The evaluation performed confirms clearly the benefits of employing the polarity and subjective information on emotion detection and thus endorses the relevance of our approach.
The electronic Word of Mouth has become the most powerful communication channel thanks to the wide usage of the Social Media. Our research proposes an approach towards the production of automatic ultra-concise summaries from multiple Web 2.0 sources. We exploit user-generated content from reviews and microblogs in different domains, and compile and analyse four types of ultra-concise summaries: a)positive information, b) negative information; c) both or d) objective information. The appropriateness and usefulness of our model is demonstrated by its successful results and great potential in real-life applications, thus meaning a relevant advancement of the state-of-the-art approaches.

2016

Detecting depression or personality traits, tutoring and student behaviour systems, or identifying cases of cyber-bulling are a few of the wide range of the applications, in which the automatic detection of emotion is a crucial element. Emotion detection has the potential of high impact by contributing the benefit of business, society, politics or education. Given this context, the main objective of our research is to contribute to the resolution of one of the most important challenges in textual emotion detection task: the problems of emotional corpora annotation. This will be tackled by proposing of a new semi-automatic methodology. Our innovative methodology consists in two main phases: (1) an automatic process to pre-annotate the unlabelled sentences with a reduced number of emotional categories; and (2) a refinement manual process where human annotators will determine which is the predominant emotion between the emotional categories selected in the phase 1. Our proposal in this paper is to show and evaluate the pre-annotation process to analyse the feasibility and the benefits by the methodology proposed. The results obtained are promising and allow obtaining a substantial improvement of annotation time and cost and confirm the usefulness of our pre-annotation process to improve the annotation task.

2012

2011

2010

2009