Ergun Bicici

Also published as: Ergun Biçici


2021

We obtain new results using referential translation machines (RTMs) with predictions mixed to obtain a better mixture of experts prediction. Our super learner results improve the results and provide a robust combination model.

2020

We obtain new results using referential translation machines (RTMs) with predictions mixed and stacked to obtain a better mixture of experts prediction. We are able to achieve better results than the baseline model in Task 1 subtasks. Our stacking results significantly improve the results on the training sets but decrease the test set results. RTMs can achieve to become the 5th among 13 models in ru-en subtask and 5th in the multilingual track of sentence-level Task 1 based on MAE.

2019

We build parfda Moses statistical machine translation (SMT) models for most language pairs in the news translation task. We experiment with a hybrid approach using neural language models integrated into Moses. We obtain the constrained data statistics on the machine translation task, the coverage of the test sets, and the upper bounds on the translation results. We also contribute a new testsuite for the German-English language pair and a new automated key phrase extraction technique for the evaluation of the testsuite translations.
We obtain new results using referential translation machines with increased number of learning models in the set of results that are stacked to obtain a better mixture of experts prediction. We combine features extracted from the word-level predictions with the sentence- or document-level features, which significantly improve the results on the training sets but decrease the test set results.

2018

We build parallel feature decay algorithms (parfda) Moses statistical machine translation (SMT) models for language pairs in the translation task. parfda obtains results close to the top constrained phrase-based SMT with an average of 2.252 BLEU points difference on WMT 2017 datasets using significantly less computation for building SMT systems than that would be spent using all available corpora. We obtain BLEU upper bounds based on target coverage to identify which systems used additional data. We use PRO for tuning to decrease fluctuations in the results and postprocess translation outputs to decrease translation errors due to the casing of words. F1 scores on the key phrases of the English to Turkish testsuite that we prepared reveal that parfda achieves 2nd best results. Truecasing translations before scoring obtained the best results overall.
With improved prediction combination using weights based on their training performance and stacking and multilayer perceptrons to build deeper prediction models, RTMs become the 3rd system in general at the sentence-level prediction of translation scores and achieve the lowest RMSE in English to German NMT QET results. For the document-level task, we compare document-level RTM models with sentence-level RTM models obtained with the concatenation of document sentences and obtain similar results.

2017

We use referential translation machines for predicting the semantic similarity of text in all STS tasks which contain Arabic, English, Spanish, and Turkish this year. RTMs pioneer a language independent approach to semantic similarity and remove the need to access any task or domain specific information or resource. RTMs become 6th out of 52 submissions in Spanish to English STS. We average prediction scores using weights based on the training performance to improve the overall performance.

2016

2015

2014

2013

2011

2010

2009