Emily Klapper


2025

Domestic violence survivors often share their experiences in online spaces, offering valuable insights into common abuse patterns. This study analyzes a dataset of personal narratives about domestic violence from Reddit, focusing on event extraction and topic modeling to uncover recurring themes. We evaluate GPT-4 and LLaMA-3.1 for extracting key sentences, finding that GPT-4 exhibits higher precision, while LLaMA-3.1 achieves better recall. Using LLM-based topic assignment, we identify dominant themes such as psychological aggression, financial abuse, and physical assault which align with previously published psychology findings. A co-occurrence and PMI analysis further reveals the interdependencies among different abuse types, emphasizing the multifaceted nature of domestic violence. Our findings provide a structured approach to analyzing survivor narratives, with implications for social support systems and policy interventions.