Eleanor Chen


2025

Large Language Models (LLMs) enhanced with tool use and APIs improve task performance but often misuse them, leading to inefficiency and unnecessary cost. We propose Self Knowledge-Tracing for Tool Use (SKT-Tool), a method enabling LLMs to assess their capabilities and make informed API usage decisions using knowledge tracing (KT). Our teacher-student framework helps LLMs optimize API calls in real-time without fine-tuning. Experiments across multiple datasets show that SKT-Tool significantly reduces API calls while maintaining accuracy, offering a scalable and cost-effective solution for tool-augmented LLMs. We conclude by analyzing shortcomings in this method and identifying directions for future work.