Edward Grefenstette

Also published as: E. Grefenstette


2023

2022

2018

Reading comprehension (RC)—in contrast to information retrieval—requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.

2017

Learning representation to model the meaning of text has been a core problem in NLP. The last several years have seen extensive interests on distributional approaches, in which text spans of different granularities are encoded as vectors of numerical values. If properly learned, such representation has showed to achieve the state-of-the-art performance on a wide range of NLP problems.In this tutorial, we will cover the fundamentals and the state-of-the-art research on neural network-based modeling for semantic composition, which aims to learn distributed representation for different granularities of text, e.g., phrases, sentences, or even documents, from their sub-component meaning representation, e.g., word embedding.

2016

2015

2014

2013

2011