Edward Cui
2021
GEM: A General Evaluation Benchmark for Multimodal Tasks
Lin Su | Nan Duan | Edward Cui | Lei Ji | Chenfei Wu | Huaishao Luo | Yongfei Liu | Ming Zhong | Taroon Bharti | Arun Sacheti
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Lin Su | Nan Duan | Edward Cui | Lei Ji | Chenfei Wu | Huaishao Luo | Yongfei Liu | Ming Zhong | Taroon Bharti | Arun Sacheti
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
2020
XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation
Yaobo Liang | Nan Duan | Yeyun Gong | Ning Wu | Fenfei Guo | Weizhen Qi | Ming Gong | Linjun Shou | Daxin Jiang | Guihong Cao | Xiaodong Fan | Ruofei Zhang | Rahul Agrawal | Edward Cui | Sining Wei | Taroon Bharti | Ying Qiao | Jiun-Hung Chen | Winnie Wu | Shuguang Liu | Fan Yang | Daniel Campos | Rangan Majumder | Ming Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Yaobo Liang | Nan Duan | Yeyun Gong | Ning Wu | Fenfei Guo | Weizhen Qi | Ming Gong | Linjun Shou | Daxin Jiang | Guihong Cao | Xiaodong Fan | Ruofei Zhang | Rahul Agrawal | Edward Cui | Sining Wei | Taroon Bharti | Ying Qiao | Jiun-Hung Chen | Winnie Wu | Shuguang Liu | Fan Yang | Daniel Campos | Rangan Majumder | Ming Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
In this paper, we introduce XGLUE, a new benchmark dataset to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora, and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE (Wang et al.,2019), which is labeled in English and includes natural language understanding tasks only, XGLUE has three main advantages: (1) it provides two corpora with different sizes for cross-lingual pre-training; (2) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (3) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder (Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison.
Search
Fix author
Co-authors
- Taroon Bharti 2
- Nan Duan 2
- Rahul Agrawal 1
- Daniel Campos 1
- Guihong Cao 1
- Jiun-Hung Chen 1
- Xiaodong Fan 1
- Yeyun Gong 1
- Ming Gong 1
- Fenfei Guo 1
- Lei Ji 1
- Daxin Jiang 1
- Yaobo Liang 1
- Shuguang Liu 1
- Yongfei Liu 1
- Huaishao Luo 1
- Rangan Majumder 1
- Weizhen Qi 1
- Ying Qiao 1
- Arun Sacheti 1
- Linjun Shou 1
- Lin Su 1
- Sining Wei 1
- Ning Wu 1
- Winnie Wu 1
- Chenfei Wu 1
- Fan Yang 1
- Ruofei Zhang 1
- Ming Zhong 1
- Ming Zhou 1