Edoardo Ferrante


2025

We open-source SMOL (Set of Maximal Over-all Leverage), a suite of training data to un-lock machine translation for low-resource languages (LRLs). SMOL has been translated into123 under-resourced languages (125 language pairs), including many for which there exist no previous public resources, for a total of 6.1M translated tokens. SMOL comprises two sub-datasets, each carefully chosen for maximum impact given its size: SMOLSENT, a set of sentences chosen for broad unique token coverage, and SMOLDOC, a document-level source focusing on a broad topic coverage. They join the already released GATITOS for a trifecta of paragraph, sentence, and token-level content. We demonstrate that using SMOL to prompt or fine-tune Large Language Models yields robust chrF improvements. In addition to translation, we provide factuality ratings and rationales for all documents in SMOLDOC, yielding the first factuality datasets for most of these languages.

2024

This paper describes the submission of a high-quality translation of the OLDI Seed datasetinto Italian for the WMT 2023 Open LanguageData Initiative shared task.The base of this submission is a previous ver-sion of an Italian OLDI Seed dataset releasedby Haberland et al. (2024) via machine trans-lation and partial post-editing. This data wassubsequently reviewed in its entirety by twonative speakers of Italian, who carried out ex-tensive post-editing with particular attention tothe idiomatic translation of named entities.

2023