Dosung Lee


2025

Multi-hop question answering (MHQA) involves reasoning across multiple documents to answer complex questions. Dense retrievers typically outperform sparse methods like BM25 by leveraging semantic embeddings in many tasks; however, they require labeled query-document pairs for fine-tuning, which poses a significant challenge in MHQA due to the complexity of the reasoning steps. To overcome this limitation, we introduce Retriever Supervision with Consistency and Relevance (ReSCORE), a novel method for training dense retrievers for MHQA without the need for labeled documents. ReSCORE leverages large language models to measure document-question relevance with answer consistency and utilizes this information to train a retriever within an iterative question-answering framework. Evaluated on three MHQA benchmarks, our extensive experiments demonstrate the effectiveness of ReSCORE, with significant improvements in retrieval performance that consequently lead to state-of-the-art Exact Match and F1 scores for MHQA.
Recent advances in question answering have led to substantial progress in tasks such as multi-hop reasoning. However, global sensemaking—answering questions by synthesizing information from an entire corpus—remains a significant challenge. A prior graph-basedapproach to global sensemaking lacks retrieval mechanisms, topic specificity, and incurs high inference costs. To address these limitations, we propose ReTAG, a RetrievalEnhanced, Topic-Augmented Graph framework that constructs topic-specific subgraphs and retrieves the relevant summaries for response generation. Experiments show that ReTAG improves response quality while significantly reducing inference time compared to the baseline. Our code is available at https://github.com/bykimby/retag.