Dima Taji


2025

Training models that can perform well on various NLP tasks requires large amounts of data, which becomes even more apparent with more nuanced tasks such as anaphora and coreference resolution. This paper presents the automatic creation of an Arabic CorefUD dataset through the automatic conversion of the existing gold-annotated OntoNotes.

2022

We present the Camel Treebank (CAMELTB), a 188K word open-source dependency treebank of Modern Standard and Classical Arabic. CAMELTB 1.0 includes 13 sub-corpora comprising selections of texts from pre-Islamic poetry to social media online commentaries, and covering a range of genres from religious and philosophical texts to news, novels, and student essays. The texts are all publicly available (out of copyright, creative commons, or under open licenses). The texts were morphologically tokenized and syntactically parsed automatically, and then manually corrected by a team of trained annotators. The annotations follow the guidelines of the Columbia Arabic Treebank (CATiB) dependency representation. We discuss our annotation process and guideline extensions, and we present some initial observations on lexical and syntactic differences among the annotated sub-corpora. This corpus will be publicly available to support and encourage research on Arabic NLP in general and on new, previously unexplored genres that are of interest to a wider spectrum of researchers, from historical linguistics and digital humanities to computer-assisted language pedagogy.

2020

In this paper we present a parsing model for projective dependency trees which takes advantage of the existence of complementary dependency annotations which is the case in Arabic, with the availability of CATiB and UD treebanks. Our system performs syntactic parsing according to both annotation types jointly as a sequence of arc-creating operations, and partially created trees for one annotation are also available to the other as features for the score function. This method gives error reduction of 9.9% on CATiB and 6.1% on UD compared to a strong baseline, and ablation tests show that the main contribution of this reduction is given by sharing tree representation between tasks, and not simply sharing BiLSTM layers as is often performed in NLP multitask systems.
We present CAMeL Tools, a collection of open-source tools for Arabic natural language processing in Python. CAMeL Tools currently provides utilities for pre-processing, morphological modeling, Dialect Identification, Named Entity Recognition and Sentiment Analysis. In this paper, we describe the design of CAMeL Tools and the functionalities it provides.
We present PALMYRA 2.0, a graphical dependency-tree visualization and editing software. PALMYRA 2.0 is designed to be highly configurable to any dependency parsing representation, and to enable the annotation of a multitude of linguistic features. It uses an intuitive interface that relies on drag-and-drop utilities as well as pop-up menus and keyboard shortcuts that can be easily specified.

2018

We introduce CALIMA-Star, a very rich Arabic morphological analyzer and generator that provides functional and form-based morphological features as well as built-in tokenization, phonological representation, lexical rationality and much more. This tool includes a fast engine that can be easily integrated into other systems, as well as an easy-to-use API and a web interface. CALIMA-Star also supports morphological reinflection. We evaluate CALIMA-Star against four commonly used analyzers for Arabic in terms of speed and morphological content.

2017

We present Arab-Acquis, a large publicly available dataset for evaluating machine translation between 22 European languages and Arabic. Arab-Acquis consists of over 12,000 sentences from the JRC-Acquis (Acquis Communautaire) corpus translated twice by professional translators, once from English and once from French, and totaling over 600,000 words. The corpus follows previous data splits in the literature for tuning, development, and testing. We describe the corpus and how it was created. We also present the first benchmarking results on translating to and from Arabic for 22 European languages.
The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, the task was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe how the data sets were prepared, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.
We describe the process of creating NUDAR, a Universal Dependency treebank for Arabic. We present the conversion from the Penn Arabic Treebank to the Universal Dependency syntactic representation through an intermediate dependency representation. We discuss the challenges faced in the conversion of the trees, the decisions we made to solve them, and the validation of our conversion. We also present initial parsing results on NUDAR.

2016

In this paper, we present CamelParser, a state-of-the-art system for Arabic syntactic dependency analysis aligned with contextually disambiguated morphological features. CamelParser uses a state-of-the-art morphological disambiguator and improves its results using syntactically driven features. The system offers a number of output formats that include basic dependency with morphological features, two tree visualization modes, and traditional Arabic grammatical analysis.
Search
Fix author