Diego Ortego


2025

Extreme Multi-label Classification (XMC) methods predict relevant labels for a given query in an extremely large label space. Recent works in XMC address this problem using deep encoders that project text descriptions to an embedding space suitable for recovering the closest labels. However, learning deep models can be computationally expensive in large output spaces, resulting in a trade-off between high performing brute-force approaches and efficient solutions. In this paper, we propose PRIME, a XMC method that employs a novel prototypical contrastive learning technique to reconcile efficiency and performance surpassing brute-force approaches. We frame XMC as a data-to-prototype prediction task where label prototypes aggregate information from related queries. More precisely, we use a shallow transformer encoder that we coin as Label Prototype Network, which enriches label representations by aggregating text-based embeddings, label centroids and learnable free vectors. We jointly train a deep encoder and the Label Prototype Network using an adaptive triplet loss objective that better adapts to the high granularity and ambiguity of extreme label spaces. PRIME achieves state-of-the-art results in several public benchmarks of different sizes and domains, while keeping the model efficient.

2020

The aim of this position paper is to establish an initial approach to the automatic classification of digital images about the Outsider Art style of painting. Specifically, we explore whether is it possible to classify non-traditional artistic styles by using the same features that are used for classifying traditional styles? Our research question is motivated by two facts. First, art historians state that non-traditional styles are influenced by factors “outside” of the world of art. Second, some studies have shown that several artistic styles confound certain classification techniques. Following current approaches to style prediction, this paper utilises Deep Learning methods to encode image features. Our preliminary experiments have provided motivation to think that, as is the case with traditional styles, Outsider Art can be computationally modelled with objective means by using training datasets and CNN models. Nevertheless, our results are not conclusive due to the lack of a large available dataset on Outsider Art. Therefore, at the end of the paper, we have mapped future lines of action, which include the compilation of a large dataset of Outsider Art images and the creation of an ontology of Outsider Art.