Davide Mottin


2025

Recent advancements in AI for biological research focus on integrating molecular data with natural language to accelerate drug discovery. However, the scarcity of high-quality annotations limits progress in this area. This paper introduces LA3, a Language-based Automatic Annotation Augmentation framework that leverages large language models to augment existing datasets, thereby improving AI training. We demonstrate the effectiveness of LA3 by creating an enhanced dataset, LaChEBI-20, where we systematically rewrite the annotations of molecules from an established dataset. These rewritten annotations preserve essential molecular information while providing more varied sentence structures and vocabulary. Using LaChEBI-20, we train LaMolT5 based on a benchmark architecture to learn the mapping between molecular representations and augmented annotations.Experimental results on text-based *de novo* molecule generation and molecule captioning demonstrate that LaMolT5 outperforms state-of-the-art models. Notably, incorporating LA3 leads to improvements of up to 301% over the benchmark architecture. Furthermore, we validate the effectiveness of LA3 notable applications in *image*, *text* and *graph* tasks, affirming its versatility and utility.

2024

As Machine Learning (ML) models grow in size and demand higher-quality training data, the expenses associated with re-training and fine-tuning these models are escalating rapidly. Inspired by recent impressive achievements of Large Language Models (LLMs) in different fields, this paper delves into the question: can LLMs efficiently improve an ML’s performance at a minimal cost? We show that, through our proposed training-free framework LLMCorr, an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary ML model. In particular, we form a contextual knowledge database by incorporating the dataset’s label information and the ML model’s predictions on the validation dataset. Leveraging the in-context learning capability of LLMs, we ask the LLM to summarise the instances in which the ML model makes mistakes and the correlation between primary predictions and true labels. Following this, the LLM can transfer its acquired knowledge to suggest corrections for the ML model’s predictions. Our experimental results on text analysis and the challenging molecular predictions show that LLMCorr improves the performance of a number of models by up to 39%.