David Scheffer


2022

The corona pandemic and countermeasures such as social distancing and lockdowns have confronted individuals with new challenges for their mental health and well-being. It can be assumed that the Jungian psychology types of extraverts and introverts react differently to these challenges. We propose a Bi-LSTM model with an attention mechanism for classifying introversion and extraversion from German tweets, which is trained on hand-labeled data created by 335 participants. With this work, we provide this novel dataset for free use and validation. The proposed model achieves solid performance with F1 = .72. Furthermore, we created a feature engineered logistic model tree (LMT) trained on hand-labeled tweets, to which the data is also made available with this work. With this second model, German tweets before and during the pandemic have been investigated. Extraverts display more positive emotions, whilst introverts show more insight and higher rates of anxiety. Even though such a model can not replace proper psychological diagnostics, it can help shed light on linguistic markers and to help understand introversion and extraversion better for a variety of applications and investigations.

2019

Implicit motives allow for the characterization of behavior, subsequent success and long-term development. While this has been operationalized in the operant motive test, research on motives has declined mainly due to labor-intensive and costly human annotation. In this study, we analyze over 200,000 labeled data items from 40,000 participants and utilize them for engineering features for training a logistic model tree machine learning model. It captures manually assigned motives well with an F-score of 80%, coming close to the pairwise annotator intraclass correlation coefficient of r = .85. In addition, we found a significant correlation of r = .2 between subsequent academic success and data automatically labeled with our model in an extrinsic evaluation.