David S Rosenberg

Also published as: David Rosenberg


2024

Current large language model (LLM) evaluations rely on benchmarks to assess model capabilities and their encoded knowledge. However, these evaluations cannot reveal where a model encodes its knowledge, and thus little is known about which weights contain specific information. We propose a method to statically (without forward or backward passes) locate topical knowledge in the weight space of an LLM, building on a prior insight that parameters can be decoded into interpretable tokens. If parameters can be mapped into the embedding space, it should be possible to directly search for knowledge via embedding similarity. We study the validity of this assumption across several LLMs for a variety of concepts in the financial domain and a toxicity detection setup. Our analysis yields an improved understanding of the promises and limitations of static knowledge location in real-world scenarios.
Commercially available models dominate academic leaderboards. While impressive, this has concentrated research on creating and adapting general-purpose models to improve NLP leaderboard standings for large language models. However, leaderboards collect many individual tasks and general-purpose models often underperform in specialized domains; domain-specific or adapted models yield superior results. This focus on large general-purpose models excludes many academics and draws attention away from areas where they can make important contributions. We advocate for a renewed focus on developing and evaluating domain- and task-specific models, and highlight the unique role of academics in this endeavor.

2023

Autoregressive language models are trained by minimizing the cross-entropy of the model distribution Q relative to the data distribution P – that is, minimizing the forward cross-entropy, which is equivalent to maximum likelihood estimation (MLE). We have observed that models trained in this way may “over-generalize”, in the sense that they produce non-human-like text. Moreover, we believe that reverse cross-entropy, i.e., the cross-entropy of P relative to Q, is a better reflection of how a human would evaluate text generated by a model. Hence, we propose learning with MixCE, an objective that mixes the forward and reverse cross-entropies. We evaluate models trained with this objective on synthetic data settings (where P is known) and real data, and show that the resulting models yield better generated text without complex decoding strategies.

2019