Daniel Marcu


2017

We propose a novel, Abstract Meaning Representation (AMR) based approach to identifying molecular events/interactions in biomedical text. Our key contributions are: (1) an empirical validation of our hypothesis that an event is a subgraph of the AMR graph, (2) a neural network-based model that identifies such an event subgraph given an AMR, and (3) a distant supervision based approach to gather additional training data. We evaluate our approach on the 2013 Genia Event Extraction dataset and show promising results.

2016

Understanding the experimental results of a scientific paper is crucial to understanding its contribution and to comparing it with related work. We introduce a structured, queryable representation for experimental results and a baseline system that automatically populates this representation. The representation can answer compositional questions such as: “Which are the best published results reported on the NIST 09 Chinese to English dataset?” and “What are the most important methods for speeding up phrase-based decoding?” Answering such questions usually involves lengthy literature surveys. Current machine reading for academic papers does not usually consider the actual experiments, but mostly focuses on understanding abstracts. We describe annotation work to create an initial hscientific paper; experimental results representationi corpus. The corpus is composed of 67 papers which were manually annotated with a structured representation of experimental results by domain experts. Additionally, we present a baseline algorithm that characterizes the difficulty of the inference task.

2015

2012

It is common knowledge that translation is an ambiguous, 1-to-n mapping process, but to date, our community has produced no empirical estimates of this ambiguity. We have developed an annotation tool that enables us to create representations that compactly encode an exponential number of correct translations for a sentence. Our findings show that naturally occurring sentences have billions of translations. Having access to such large sets of meaning-equivalent translations enables us to develop a new metric, HyTER, for translation accuracy. We show that our metric provides better estimates of machine and human translation accuracy than alternative evaluation metrics using data from the most recent Open MT NIST evaluation and we discuss how HyTER representations can be used to inform a data-driven inquiry into natural language semantics.

2011

2010

Automated translation can assist with a variety of translation needs in government, from speeding up access to information for intelligence work to helping human translators increase their productivity. However, government entities need to have a mechanism in place so that they know whether or not they can trust the output from automated translation solutions. In this presentation, Language Weaver will present a new capability "TrustScore": an automated scoring algorithm that communicates how good the automated translation is, using a meaningful metric. With this capability, each translation is automatically assigned a score from 1 to 5 in the TrustScore. A score of 1 would indicate that the translation is unintelligible; a score of 3 would indicate that meaning has been conveyed and that the translated content is actionable. A score approaching 4 or higher would indicate that meaning and nuance have been carried through. This automatic prediction of quality has been validated by testing done across significant numbers of data points in different companies and on different types of content. After outlining TrustScore, and how it works, Language Weaver will discuss how a scoring mechanism like TrustScore could be used in a translation productivity workflow in government to assist linguists with day to day translation work. This would enable them to further benefit from their investments in automated translation software. Language Weaver would also share how TrustScore is used in commercial deployments to cost effectively publish information in near real time.
For a long time, machine translation and professional translation vendors have had a contentious relation. However, new tools, computing platforms, and business models are changing the fundamentals of this relationship. I will review the main trends in the area while emphasizing both past causes of failure and main drivers of success.

2008

2007

2006

2005

2004

2003

We introduce a new generation of commercial translation software, based primarily on statistical learning and statistical language models.

2002

The existence of a phrase in a large monolingual corpus is very useful information, and so is its frequency. We introduce an alternative approach to automatic translation of phrases/sentences that operationalizes this observation. We use a statistical machine translation system to produce alternative translations and a large monolingual corpus to (re)rank these translations. Our results show that this combination yields better translations, especially when translating out-of-domain phrases/sentences. Our approach can be also used to automatically construct parallel corpora from monolingual resources.
Pre-market prototype - to be available commercially in the second or third quarter of 2003.

2001

2000

1999

1998

1997

1995