Daniel Keim

Also published as: Daniel A. Keim


2025

The present popularity of generative language models has amplified interest in interactive methods to guide model outputs. Prompt refinement is considered one of the most effective means to influence output among these methods. We identify several challenges associated with prompting large language models, categorized into data- and model-specific, linguistic, and socio-linguistic challenges. A comprehensive examination of model outputs, including runner-up candidates and their corresponding probabilities, is needed to address these issues. The beam search tree, the prevalent algorithm to sample model outputs, can inherently supply this information. Consequently, we leverage an interactive visual method for investigating the beam search tree, facilitating analysis of the decisions made by the model during generation. Our explorative approach validates existing results and offers additional insights.

2021

Research in NLP has mainly focused on factoid questions, with the goal of finding quick and reliable ways of matching a query to an answer. However, human discourse involves more than that: it contains non-canonical questions deployed to achieve specific communicative goals. In this paper, we investigate this under-studied aspect of NLP by introducing a targeted task, creating an appropriate corpus for the task and providing baseline models of diverse nature. With this, we are also able to generate useful insights on the task and open the way for future research in this direction.

2019

We present a modular framework for the rapid-prototyping of linguistic, web-based, visual analytics applications. Our framework gives developers access to a rich set of machine learning and natural language processing steps, through encapsulating them into micro-services and combining them into a computational pipeline. This processing pipeline is auto-configured based on the requirements of the visualization front-end, making the linguistic processing and visualization design, detached independent development tasks. This paper describes the constellation and modality of our framework, which continues to support the efficient development of various human-in-the-loop, linguistic visual analytics research techniques and applications.
Historical change typically is the result of complex interactions between several linguistic factors. Identifying the relevant factors and understanding how they interact across the temporal dimension is the core remit of historical linguistics. With respect to corpus work, this entails a separate annotation, extraction and painstaking pair-wise comparison of the relevant bits of information. This paper presents a significant extension of HistoBankVis, a multilayer visualization system which allows a fast and interactive exploration of complex linguistic data. Linguistic factors can be understood as data dimensions which show complex interrelationships. We model these relationships with the Parallel Sets technique. We demonstrate the powerful potential of this technique by applying the system to understanding the interaction of case, grammatical relations and word order in the history of Icelandic.

2017

2015

2012

2011

2010