Cong Zeng
2025
Libra-Leaderboard: Towards Responsible AI through a Balanced Leaderboard of Safety and Capability
Haonan Li | Xudong Han | Zenan Zhai | Honglin Mu | Hao Wang | Zhenxuan Zhang | Yilin Geng | Shom Lin | Renxi Wang | Artem Shelmanov | Xiangyu Qi | Yuxia Wang | Donghai Hong | Youliang Yuan | Meng Chen | Haoqin Tu | Fajri Koto | Cong Zeng | Tatsuki Kuribayashi | Rishabh Bhardwaj | Bingchen Zhao | Yawen Duan | Yi Liu | Emad A. Alghamdi | Yaodong Yang | Yinpeng Dong | Soujanya Poria | Pengfei Liu | Zhengzhong Liu | Hector Xuguang Ren | Eduard Hovy | Iryna Gurevych | Preslav Nakov | Monojit Choudhury | Timothy Baldwin
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
Haonan Li | Xudong Han | Zenan Zhai | Honglin Mu | Hao Wang | Zhenxuan Zhang | Yilin Geng | Shom Lin | Renxi Wang | Artem Shelmanov | Xiangyu Qi | Yuxia Wang | Donghai Hong | Youliang Yuan | Meng Chen | Haoqin Tu | Fajri Koto | Cong Zeng | Tatsuki Kuribayashi | Rishabh Bhardwaj | Bingchen Zhao | Yawen Duan | Yi Liu | Emad A. Alghamdi | Yaodong Yang | Yinpeng Dong | Soujanya Poria | Pengfei Liu | Zhengzhong Liu | Hector Xuguang Ren | Eduard Hovy | Iryna Gurevych | Preslav Nakov | Monojit Choudhury | Timothy Baldwin
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
As large language models (LLMs) continue to evolve, leaderboards play a significant role in steering their development. Existing leaderboards often prioritize model capabilities while overlooking safety concerns, leaving a significant gap in responsible AI development. To address this gap, we introduce Libra-Leaderboard, a comprehensive framework designed to rank LLMs through a balanced evaluation of performance and safety. Combining a dynamic leaderboard with an interactive LLM arena, Libra-Leaderboard encourages the joint optimization of capability and safety. Unlike traditional approaches that average performance and safety metrics, Libra-Leaderboard uses a distance-to-optimal-score method to calculate the overall rankings. This approach incentivizes models to achieve a balance rather than excelling in one dimension at the expense of some other ones. In the first release, Libra-Leaderboard evaluates 26 mainstream LLMs from 14 leading organizations, identifying critical safety challenges even in state-of-the-art models.
Search
Fix author
Co-authors
- Emad A. Alghamdi 1
- Timothy Baldwin 1
- Rishabh Bhardwaj 1
- Meng Chen 1
- Monojit Choudhury 1
- Yinpeng Dong 1
- Yawen Duan 1
- Yilin Geng 1
- Iryna Gurevych 1
- Xudong Han 1
- Donghai Hong 1
- Eduard Hovy 1
- Fajri Koto 1
- Tatsuki Kuribayashi 1
- Haonan Li 1
- Shom Lin 1
- Yi Liu 1
- Pengfei Liu 1
- Zhengzhong Liu 1
- Honglin Mu 1
- Preslav Nakov 1
- Soujanya Poria 1
- Xiangyu Qi 1
- Hector Xuguang Ren 1
- Artem Shelmanov 1
- Haoqin Tu 1
- Hao Wang 1
- Renxi Wang 1
- Yuxia Wang 1
- Yaodong Yang (杨耀东) 1
- Youliang Yuan 1
- Zenan Zhai 1
- Zhenxuan Zhang 1
- Bingchen Zhao 1