Chuhan Wang


2025

This paper presents our submission to Subtask 2 (multi-label classification of persuasion techniques) of the Shared Task on Detection and Classification of Persuasion Techniques in Slavic Languages at SlavNLP 2025. Our method leverages a teacher–student framework based on large language models (LLMs): a Qwen3 32B teacher model generates natural language explanations for annotated persuasion techniques, and a Qwen2.5 32B student model is fine-tuned to replicate both the teacher’s rationales and the final label predictions. We train our models on the official shared task dataset, supplemented by annotated resources from SemEval 2023 Task 3 and CLEF 2024 Task 3 covering English, Russian, and Polish to improve cross-lingual robustness. Our final system ranks 4th on BG, SI, and HR, and 5th on PL in terms of micro-F1 score among all participating teams.

2024

Detecting persuasive communication is an important topic in Natural Language Processing (NLP), as it can be useful in identifying fake information on social media. We have developed a system to identify applied persuasion techniques in text fragments across four languages: English, Bulgarian, North Macedonian, and Arabic. Our system uses data augmentation methods and employs an ensemble strategy that combines the strengths of both RoBERTa and DeBERTa models. Due to limited resources, we concentrated solely on task 1, and our solution achieved the top ranking in the English track during the official assessments. We also analyse the impact of architectural decisions, data constructionand training strategies.