Christoph Tillmann

Also published as: C. Tillmann


2023

Offensive language such as hate, abuse, and profanity (HAP) occurs in various content on the web. While previous work has mostly dealt with sentence level annotations, there have been a few recent attempts to identify offensive spans as well. We build upon this work and introduce MUTED, a system to identify multilingual HAP content by displaying offensive arguments and their targets using heat maps to indicate their intensity. MUTED can leverage any transformer-based HAP-classification model and its attention mechanism out-of-the-box to identify toxic spans, without further fine-tuning. In addition, we use the spaCy library to identify the specific targets and arguments for the words predicted by the attention heatmaps. We present the model’s performance on identifying offensive spans and their targets in existing datasets and present new annotations on German text. Finally, we demonstrate our proposed visualization tool on multilingual inputs.

2014

The training data for statistical machine translation are gathered from various sources representing a mixture of domains. In this work, we argue that when translating dialects representing varieties of the same language, a manually assigned data source is not a reliable indicator of the dialect. We resort to automatic dialect classification to refine the training corpora according to the different dialects and build improved dialect specific systems. A fairly standard classifier for Arabic developed within this work achieves state-of-the-art performance, with classification precision above 90%, making it usefully accurate for our application. The classification of the data is then used to distinguish between the different dialects, split the data accordingly, and utilize the new splits for several adaptation techniques. Performing translation experiments on a large scale dialectal Arabic to English translation task, our results show that the classifier generates better contrast between the dialects and achieves superior translation quality than using the original manual corpora splits.

2009

2008

2006

2005

2004

2003

2000

1999

1998

1997

1996