Chris Wilhelm


2023

Despite growing interest in applying natural language processing (NLP) and computer vision (CV) models to the scholarly domain, scientific documents remain challenging to work with. They’re often in difficult-to-use PDF formats, and the ecosystem of models to process them is fragmented and incomplete. We introduce PaperMage, an open-source Python toolkit for analyzing and processing visually-rich, structured scientific documents. PaperMage offers clean and intuitive abstractions for seamlessly representing and manipulating both textual and visual document elements. PaperMage achieves this by integrating disparate state-of-the-art NLP and CV models into a unified framework, and provides turn-key recipes for common scientific document processing use-cases. PaperMage has powered multiple research prototypes of AI applications over scientific documents, along with Semantic Scholar’s large-scale production system for processing millions of PDFs. GitHub: https://github.com/allenai/papermage

2018

We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in www.semanticscholar.org.
Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.