Chandler May


2025

A core part of scientific peer review involves providing expert critiques that directly assess the scientific claims a paper makes. While it is now possible to automatically generate plausible (if generic) reviews, ensuring that these reviews are sound and grounded in the papers’ claims remains challenging. To facilitate LLM benchmarking on these challenges, we introduce CLAIMCHECK, an annotated dataset of NeurIPS 2023 and 2024 submissions and reviews mined from OpenReview. CLAIMCHECK is richly annotated by ML experts for weakness statements in the reviews and the paper claims that they dispute, as well as fine-grained labels of the validity, objectivity, and type of the identified weaknesses. We benchmark several LLMs on three claim-centric tasks supported by CLAIMCHECK, requiring models to (1) associate weaknesses with the claims they dispute, (2) predict fine-grained labels for weaknesses and rewrite the weaknesses to enhance their specificity, and (3) verify a paper’s claims with grounded reasoning. Our experiments reveal that cutting-edge LLMs, while capable of predicting weakness labels in (2), continue to underperform relative to human experts on all other tasks.

2022

Neural coreference resolution models trained on one dataset may not transfer to new, low-resource domains. Active learning mitigates this problem by sampling a small subset of data for annotators to label. While active learning is well-defined for classification tasks, its application to coreference resolution is neither well-defined nor fully understood. This paper explores how to actively label coreference, examining sources of model uncertainty and document reading costs. We compare uncertainty sampling strategies and their advantages through thorough error analysis. In both synthetic and human experiments, labeling spans within the same document is more effective than annotating spans across documents. The findings contribute to a more realistic development of coreference resolution models.

2021

We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo.

2019

The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test’s assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.

2017

Computer Assisted Discovery Extraction and Translation (CADET) is a workbench for helping knowledge workers find, label, and translate documents of interest. It combines a multitude of analytics together with a flexible environment for customizing the workflow for different users. This open-source framework allows for easy development of new research prototypes using a micro-service architecture based atop Docker and Apache Thrift.
We analyze the Stanford Natural Language Inference (SNLI) corpus in an investigation of bias and stereotyping in NLP data. The SNLI human-elicitation protocol makes it prone to amplifying bias and stereotypical associations, which we demonstrate statistically (using pointwise mutual information) and with qualitative examples.

2015

2014