Cat Luong


2025

Emotions manifest through physical experiences and bodily reactions, yet identifying such embodied emotions in text remains understudied. We present an embodied emotion classification dataset, CHEER-Ekman, extending the existing binary embodied emotion dataset with Ekman’s six basic emotion categories. Using automatic best-worst scaling with large language models, we achieve performance superior to supervised approaches on our new dataset. Our investigation reveals that simplified prompting instructions and chain-of-thought reasoning significantly improve emotion recognition accuracy, enabling smaller models to achieve competitive performance with larger ones.
The embodiment of emotional reactions from body parts contains rich information about our affective experiences. We propose a framework that utilizes state-of-the-art large vision language models (LVLMs) to generate Embodied LVLM Emotion Narratives (ELENA). These are well-defined, multi-layered text outputs, primarily comprising descriptions that focus on the salient body parts involved in emotional reactions. We also employ attention maps and observe that contemporary models exhibit a persistent bias towards the facial region. Despite this limitation, we observe that our employed framework can effectively recognize embodied emotions in face-masked images, outperforming baselines without any fine-tuning. ELENA opens a new trajectory for embodied emotion analysis across the modality of vision and enriches modeling in an affect-aware setting.