Carine Graff


2025

AI support of collaborative interactions entails mediating potential misalignment between interlocutor beliefs. Common preference alignment methods like DPO excel in static settings, but struggle in dynamic collaborative tasks where the explicit signals of interlocutor beliefs are sparse and skewed. We propose the Frictional Agent Alignment Framework (FAAF), to generate precise, context-aware “friction” that prompts for deliberation and re-examination of existing evidence. FAAF’s two-player objective decouples from data skew: a frictive-state policy identifies belief misalignments, while an intervention policy crafts collaborator-preferred responses. We derive an analytical solution to this objective, enabling training a single policy via a simple supervised loss. Experiments on three benchmarks show FAAF outperforms competitors in producing concise, interpretable friction and in OOD generalization. By aligning LLMs to act as adaptive “thought partners”—not passive responders—FAAF advances scalable, dynamic human-AI collaboration. Our code and data can be found at https://github.com/csu-signal/FAAF_ACL.
This project note describes challenges and procedures undertaken in annotating an audiovisual dataset capturing a multimodal situated collaborative construction task. In the task, all participants begin with different partial information, and must collaborate using speech, gesture, and action to arrive a solution that satisfies all individual pieces of private information. This rich data poses a number of annotation challenges, from small objects in a close space, to the implicit and multimodal fashion in which participants express agreement, disagreement, and beliefs. We discuss the data collection procedure, annotation schemas and tools, and future use cases.