Brijesh Bhatt


2025

Grammatical Error Correction (GEC) is a fundamental task in Natural Language Processing that focuses on automatically detecting and correcting grammatical errors in text. In this paper, we present a novel approach for GEC for Gujarati. Gujarati is an Indian language spoken by over 55 million people worldwide. Our approach combines a large language model with non-parametric memory modules to address the low-resource challenge. We have evaluated our system on human-annotated and synthetic datasets. The overall result indicates promising results for Gujarati. The proposed approach is generic enough to be adopted by other languages. Furthermore, we release a publicly available evaluation dataset for Gujarati GEC along with an adapted version of the ERRANT framework to enable error-type-wise evaluation in Gujarati.

2022

UniMorph 4.0: Universal Morphology
Khuyagbaatar Batsuren | Omer Goldman | Salam Khalifa | Nizar Habash | Witold Kieraś | Gábor Bella | Brian Leonard | Garrett Nicolai | Kyle Gorman | Yustinus Ghanggo Ate | Maria Ryskina | Sabrina Mielke | Elena Budianskaya | Charbel El-Khaissi | Tiago Pimentel | Michael Gasser | William Abbott Lane | Mohit Raj | Matt Coler | Jaime Rafael Montoya Samame | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Arturo Oncevay | Juan López Bautista | Gema Celeste Silva Villegas | Lucas Torroba Hennigen | Adam Ek | David Guriel | Peter Dirix | Jean-Philippe Bernardy | Andrey Scherbakov | Aziyana Bayyr-ool | Antonios Anastasopoulos | Roberto Zariquiey | Karina Sheifer | Sofya Ganieva | Hilaria Cruz | Ritván Karahóǧa | Stella Markantonatou | George Pavlidis | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Candy Angulo | Jatayu Baxi | Andrew Krizhanovsky | Natalia Krizhanovskaya | Elizabeth Salesky | Clara Vania | Sardana Ivanova | Jennifer White | Rowan Hall Maudslay | Josef Valvoda | Ran Zmigrod | Paula Czarnowska | Irene Nikkarinen | Aelita Salchak | Brijesh Bhatt | Christopher Straughn | Zoey Liu | Jonathan North Washington | Yuval Pinter | Duygu Ataman | Marcin Wolinski | Totok Suhardijanto | Anna Yablonskaya | Niklas Stoehr | Hossep Dolatian | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Aryaman Arora | Richard J. Hatcher | Ritesh Kumar | Jeremiah Young | Daria Rodionova | Anastasia Yemelina | Taras Andrushko | Igor Marchenko | Polina Mashkovtseva | Alexandra Serova | Emily Prud’hommeaux | Maria Nepomniashchaya | Fausto Giunchiglia | Eleanor Chodroff | Mans Hulden | Miikka Silfverberg | Arya D. McCarthy | David Yarowsky | Ryan Cotterell | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the Thirteenth Language Resources and Evaluation Conference
The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.
Computational morphology deals with the processing of a language at the word level. A morphological analyzer is a key linguistic word-level tool that returns all the constituent morphemes and their grammatical categories associated with a particular word form. For the highly inflectional and low resource languages, the creation of computational morphology-related tools is a challenging task due to the unavailability of underlying key resources. In this paper, we discuss the creation of an annotated morphological dataset- GujMORPH for the Gujarati - an indo-aryan language. For the creation of this dataset, we studied language grammar, word formation rules, and suffix attachments in depth. This dataset contains 16,527 unique inflected words along with their morphological segmentation and grammatical feature tagging information. It is a first of its kind dataset for the Gujarati language and can be used to develop morphological analyzer and generator models. The dataset is annotated in the standard Unimorph schema and evaluated on the baseline system. We also describe the tool used to annotate the data in the standard format. The dataset is released publicly along with the library. Using this library, the data can be obtained in a format that can be directly used to train any machine learning model.

2021

Developing Natural Language Processing resources for a low resource language is a challenging but essential task. In this paper, we present a Morphological Analyzer for Gujarati. We have used a Bi-Directional LSTM based approach to perform morpheme boundary detection and grammatical feature tagging. We have created a data set of Gujarati words with lemma and grammatical features. The Bi-LSTM based model of Morph Analyzer discussed in the paper handles the language morphology effectively without the knowledge of any hand-crafted suffix rules. To the best of our knowledge, this is the first dataset and morph analyzer model for the Gujarati language which performs both grammatical feature tagging and morpheme boundary detection tasks.
Transformer based architectures have shown notable results on many down streaming tasks including question answering. The availability of data, on the other hand, impedes obtaining legitimate performance for low-resource languages. In this paper, we investigate the applicability of pre-trained multilingual models to improve the performance of question answering in low-resource languages. We tested four combinations of language and task adapters using multilingual transformer architectures on seven languages similar to MLQA dataset. Additionally, we have also proposed zero-shot transfer learning of low-resource question answering using language and task adapters. We observed that stacking the language and the task adapters improves the multilingual transformer models’ performance significantly for low-resource languages. Our code and trained models are available at: https://github.com/CALEDIPQALL/

2020

Sign language is a complete natural language used by deaf and dumb people. It has its own grammar and it differs with spoken language to a great extent. Since people without hearing and speech impairment lack the knowledge of the sign language, the deaf and dumb people find it difficult to communicate with them. The conception of system that would be able to translate the sign language into text would facilitate understanding of sign language without human interpreter. This paper describes a systematic approach that takes Indian Sign Language (ISL) video as input and converts it into text using frame sequence generator and image augmentation techniques. By incorporating these two concepts, we have increased dataset size and reduced overfitting. It is demonstrated that using simple image manipulation techniques and batch of shifted frames of videos, performance of sign language recognition can be significantly improved. Approach described in this paper achieves 99.57% accuracy on the dynamic gesture dataset of ISL.
We present a novel approach for improving the performance of an End-to-End speech recognition system for the Gujarati language. We follow a deep learning based approach which includes Convolutional Neural Network (CNN), Bi-directional Long Short Term Memory (BiLSTM) layers, Dense layers, and Connectionist Temporal Classification (CTC) as a loss function. In order to improve the performance of the system with the limited size of the dataset, we present a combined language model (WLM and CLM) based prefix decoding technique and Bidirectional Encoder Representations from Transformers (BERT) based post-processing technique. To gain key insights from our Automatic Speech Recognition (ASR) system, we proposed different analysis methods. These insights help to understand our ASR system based on a particular language (Gujarati) as well as can govern ASR systems’ to improve the performance for low resource languages. We have trained the model on the Microsoft Speech Corpus, and we observe a 5.11% decrease in Word Error Rate (WER) with respect to base-model WER.

2015

2014

2013

2012

Search
Co-authors
Venues
Fix author